Bin Guanghong, Wu Shuicai, Shao Minggang, Zhou Zhuhuang, Bin Guangyu
College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
J Electrocardiol. 2020 Sep-Oct;62:190-199. doi: 10.1016/j.jelectrocard.2020.08.017. Epub 2020 Aug 25.
The inverse problem of electrocardiography (ECG) of computing epicardial potentials from body surface potentials, is an ill-posed problem and needs to be solved by regularization techniques. The L2-norm regularization can cause considerable smoothing of the solution, while the L1-norm scheme promotes a solution with sharp boundaries/gradients between piecewise smooth regions, so L1-norm is widely used in the ECG inverse problem. However, large amount of computation and long computation time are needed in the L1-norm scheme. In this paper, by combining iterative reweight norm (IRN) with a factorization-free preconditioned LSQR algorithm (MLSQR), a new IRN-MLSQR method was proposed to accelerate the convergence speed of the L1-norm scheme. We validated the IRN-MLSQR method using experimental data from isolated canine hearts and clinical procedures in the electrophysiology laboratory. The results showed that the IRN-MLSQR method can significantly reduce the number of iterations and operation time while ensuring the calculation accuracy. The number of iterations of the IRN-MLSQR method is about 60%-70% that of the conventional IRN method, and at the same time, the accuracy of the solution is almost the same as that of the conventional IRN method. The proposed IRN-MLSQR method may be used as a new approach to the inverse problem of ECG.