Mayorca-Torres Dagoberto, León-Salas Alejandro J, Peluffo-Ordoñez Diego H
Department of Software Systems and Programming Languages, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, Granada, 18071, Spain.
Faculty of Engineering, Universidad Mariana, Cl 18 34 - 104, Pasto, 52001, Colombia.
Med Biol Eng Comput. 2025 May;63(5):1289-1317. doi: 10.1007/s11517-024-03264-z. Epub 2025 Jan 9.
This study aimed to analyze computational techniques in ECG imaging (ECGI) reconstruction, focusing on dataset identification, problem-solving, and feature extraction. We employed a PRISMA approach to review studies from Scopus and Web of Science, applying Cochrane principles to assess risk of bias. The selection was limited to English peer-reviewed papers published from 2010 to 2023, excluding studies that lacked computational technique descriptions. From 99 reviewed papers, trends show a preference for traditional methods like the boundary element and Tikhonov methods, alongside a rising use of advanced technologies including hybrid techniques and deep learning. These advancements have enhanced cardiac diagnosis and treatment precision. Our findings underscore the need for robust data utilization and innovative computational integration in ECGI, highlighting promising areas for future research and advances. This shift toward tailored cardiac care suggests significant progress in diagnostic and treatment methods.
本研究旨在分析心电图成像(ECGI)重建中的计算技术,重点关注数据集识别、问题解决和特征提取。我们采用PRISMA方法回顾了来自Scopus和Web of Science的研究,并应用Cochrane原则评估偏倚风险。选择范围限于2010年至2023年发表的英文同行评审论文,不包括缺乏计算技术描述的研究。从99篇综述论文来看,趋势表明更倾向于使用边界元法和蒂霍诺夫法等传统方法,同时包括混合技术和深度学习在内的先进技术的使用也在增加。这些进展提高了心脏诊断和治疗的精度。我们的研究结果强调了在ECGI中进行稳健的数据利用和创新计算整合的必要性,突出了未来研究和进展的有前景领域。这种向个性化心脏护理的转变表明诊断和治疗方法取得了重大进展。