Suppr超能文献

基于生成对抗网络的药物发现高内涵图像生成。

High-content image generation for drug discovery using generative adversarial networks.

机构信息

Institute of High Performance Computing, A*STAR, 138673, Singapore.

Institute of High Performance Computing, A*STAR, 138673, Singapore.

出版信息

Neural Netw. 2020 Dec;132:353-363. doi: 10.1016/j.neunet.2020.09.007. Epub 2020 Sep 20.

Abstract

Immense amount of high-content image data generated in drug discovery screening requires computationally driven automated analysis. Emergence of advanced machine learning algorithms, like deep learning models, has transformed the interpretation and analysis of imaging data. However, deep learning methods generally require large number of high-quality data samples, which could be limited during preclinical investigations. To address this issue, we propose a generative modeling based computational framework to synthesize images, which can be used for phenotypic profiling of perturbations induced by drug compounds. We investigated the use of three variants of Generative Adversarial Network (GAN) in our framework, viz., a basic Vanilla GAN, Deep Convolutional GAN (DCGAN) and Progressive GAN (ProGAN), and found DCGAN to be most efficient in generating realistic synthetic images. A pre-trained convolutional neural network (CNN) was used to extract features of both real and synthetic images, followed by a classification model trained on real and synthetic images. The quality of synthesized images was evaluated by comparing their feature distributions with that of real images. The DCGAN-based framework was applied to high-content image data from a drug screen to synthesize high-quality cellular images, which were used to augment the real image data. The augmented dataset was shown to yield better classification performance compared with that obtained using only real images. We also demonstrated the application of proposed method on the generation of bacterial images and computed feature distributions for bacterial images specific to different drug treatments. In summary, our results showed that the proposed DCGAN-based framework can be utilized to generate realistic synthetic high-content images, thus enabling the study of drug-induced effects on cells and bacteria.

摘要

在药物发现筛选中产生了大量的高内涵图像数据,这需要计算驱动的自动化分析。先进的机器学习算法(如深度学习模型)的出现改变了成像数据的解释和分析。然而,深度学习方法通常需要大量高质量的数据样本,而在临床前研究中,这些数据样本可能是有限的。为了解决这个问题,我们提出了一个基于生成模型的计算框架,用于合成图像,可用于药物化合物引起的表型分析。我们研究了在我们的框架中使用三种变体的生成对抗网络(GAN),即基本的 Vanilla GAN、深度卷积 GAN(DCGAN)和渐进式 GAN(ProGAN),发现 DCGAN 在生成逼真的合成图像方面最有效。使用预先训练的卷积神经网络(CNN)来提取真实和合成图像的特征,然后在真实和合成图像上训练分类模型。通过比较真实图像和合成图像的特征分布来评估合成图像的质量。将基于 DCGAN 的框架应用于药物筛选的高内涵图像数据,以合成高质量的细胞图像,从而增强真实图像数据。与仅使用真实图像获得的结果相比,增强后的数据集显示出更好的分类性能。我们还演示了该方法在生成细菌图像和计算特定于不同药物处理的细菌图像的特征分布方面的应用。总之,我们的结果表明,所提出的基于 DCGAN 的框架可用于生成逼真的合成高内涵图像,从而能够研究药物对细胞和细菌的诱导作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验