Central Facility for Electron Microscopy, Ulm University, Ulm, Germany.
Institute of Virology, Ulm University Medical Center, Ulm, Germany.
Cell Microbiol. 2021 Feb;23(2):e13280. doi: 10.1111/cmi.13280. Epub 2020 Nov 16.
Detailed analysis of secondary envelopment of the herpesvirus human cytomegalovirus (HCMV) by transmission electron microscopy (TEM) is crucial for understanding the formation of infectious virions. Here, we present a convolutional neural network (CNN) that automatically recognises cytoplasmic capsids and distinguishes between three HCMV capsid envelopment stages in TEM images. 315 TEM images containing 2,610 expert-labelled capsids of the three classes were available for CNN training. To overcome the limitation of small training datasets and thus poor CNN performance, we used a deep learning method, the generative adversarial network (GAN), to automatically increase our labelled training dataset with 500 synthetic images and thus to 9,192 labelled capsids. The synthetic TEM images were added to the ground truth dataset to train the Faster R-CNN deep learning-based object detector. Training with 315 ground truth images yielded an average precision (AP) of 53.81% for detection, whereas the addition of 500 synthetic training images increased the AP to 76.48%. This shows that generation and additional use of synthetic labelled images for detector training is an inexpensive way to improve detector performance. This work combines the gold standard of secondary envelopment research with state-of-the-art deep learning technology to speed up automatic image analysis even when large labelled training datasets are not available.
通过透射电子显微镜(TEM)对人类巨细胞病毒(HCMV)的二次包膜进行详细分析,对于理解感染性病毒粒子的形成至关重要。在这里,我们提出了一种卷积神经网络(CNN),它可以自动识别细胞质衣壳,并区分 TEM 图像中三种 HCMV 衣壳包膜阶段。有 315 张 TEM 图像包含 3 个类别的 2610 个专家标记的衣壳,可用于 CNN 训练。为了克服小训练数据集的限制,从而导致 CNN 性能不佳,我们使用了深度学习方法生成对抗网络(GAN),自动用 500 张合成图像增加我们的标记训练数据集,从而得到 9192 个标记的衣壳。合成 TEM 图像被添加到真实数据集,以训练基于 Faster R-CNN 的深度学习目标检测器。使用 315 张真实图像进行训练,检测的平均精度(AP)为 53.81%,而添加 500 张合成训练图像则将 AP 提高到 76.48%。这表明,生成和额外使用合成标记图像进行检测器训练是一种廉价的方法,可以提高检测器的性能。这项工作将二次包膜研究的金标准与最先进的深度学习技术相结合,即使在没有大型标记训练数据集的情况下,也可以加快自动图像分析的速度。
Histochem Cell Biol. 2019-2
Comput Methods Programs Biomed. 2020-2
Int J Comput Assist Radiol Surg. 2020-9
Comput Intell Neurosci. 2022
J Med Syst. 2018-10-12
Front Microbiol. 2024-11-15
Cell Rep Methods. 2023-9-25
Philos Trans R Soc Lond B Biol Sci. 2022-11-21
Histochem Cell Biol. 2022-11
Sensors (Basel). 2021-12-29