文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过使用生成对抗网络生成的合成标记图像来扩充训练数据,提高电子显微镜中疱疹病毒二次包膜阶段的自动检测。

Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network.

机构信息

Central Facility for Electron Microscopy, Ulm University, Ulm, Germany.

Institute of Virology, Ulm University Medical Center, Ulm, Germany.

出版信息

Cell Microbiol. 2021 Feb;23(2):e13280. doi: 10.1111/cmi.13280. Epub 2020 Nov 16.


DOI:10.1111/cmi.13280
PMID:33073426
Abstract

Detailed analysis of secondary envelopment of the herpesvirus human cytomegalovirus (HCMV) by transmission electron microscopy (TEM) is crucial for understanding the formation of infectious virions. Here, we present a convolutional neural network (CNN) that automatically recognises cytoplasmic capsids and distinguishes between three HCMV capsid envelopment stages in TEM images. 315 TEM images containing 2,610 expert-labelled capsids of the three classes were available for CNN training. To overcome the limitation of small training datasets and thus poor CNN performance, we used a deep learning method, the generative adversarial network (GAN), to automatically increase our labelled training dataset with 500 synthetic images and thus to 9,192 labelled capsids. The synthetic TEM images were added to the ground truth dataset to train the Faster R-CNN deep learning-based object detector. Training with 315 ground truth images yielded an average precision (AP) of 53.81% for detection, whereas the addition of 500 synthetic training images increased the AP to 76.48%. This shows that generation and additional use of synthetic labelled images for detector training is an inexpensive way to improve detector performance. This work combines the gold standard of secondary envelopment research with state-of-the-art deep learning technology to speed up automatic image analysis even when large labelled training datasets are not available.

摘要

通过透射电子显微镜(TEM)对人类巨细胞病毒(HCMV)的二次包膜进行详细分析,对于理解感染性病毒粒子的形成至关重要。在这里,我们提出了一种卷积神经网络(CNN),它可以自动识别细胞质衣壳,并区分 TEM 图像中三种 HCMV 衣壳包膜阶段。有 315 张 TEM 图像包含 3 个类别的 2610 个专家标记的衣壳,可用于 CNN 训练。为了克服小训练数据集的限制,从而导致 CNN 性能不佳,我们使用了深度学习方法生成对抗网络(GAN),自动用 500 张合成图像增加我们的标记训练数据集,从而得到 9192 个标记的衣壳。合成 TEM 图像被添加到真实数据集,以训练基于 Faster R-CNN 的深度学习目标检测器。使用 315 张真实图像进行训练,检测的平均精度(AP)为 53.81%,而添加 500 张合成训练图像则将 AP 提高到 76.48%。这表明,生成和额外使用合成标记图像进行检测器训练是一种廉价的方法,可以提高检测器的性能。这项工作将二次包膜研究的金标准与最先进的深度学习技术相结合,即使在没有大型标记训练数据集的情况下,也可以加快自动图像分析的速度。

相似文献

[1]
Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network.

Cell Microbiol. 2021-2

[2]
Detection of herpesvirus capsids in transmission electron microscopy images using transfer learning.

Histochem Cell Biol. 2019-2

[3]
Image generation by GAN and style transfer for agar plate image segmentation.

Comput Methods Programs Biomed. 2020-2

[4]
SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.

Int J Comput Assist Radiol Surg. 2020-9

[5]
Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.

Sci Rep. 2022-11-15

[6]
High-content image generation for drug discovery using generative adversarial networks.

Neural Netw. 2020-12

[7]
Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN).

Comput Intell Neurosci. 2022

[8]
Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.

Med Phys. 2019-5-6

[9]
Generative Adversarial Network for Medical Images (MI-GAN).

J Med Syst. 2018-10-12

[10]
Small training dataset convolutional neural networks for application-specific super-resolution microscopy.

J Biomed Opt. 2023-3

引用本文的文献

[1]
DeepEM Playground: Bringing deep learning to electron microscopy labs.

J Microsc. 2025-9

[2]
Systematic review of generative adversarial networks (GANs) in cell microscopy: Trends, practices, and impact on image augmentation.

PLoS One. 2025-6-24

[3]
Harnessing AI for advancing pathogenic microbiology: a bibliometric and topic modeling approach.

Front Microbiol. 2024-11-15

[4]
Machine learning for cross-scale microscopy of viruses.

Cell Rep Methods. 2023-9-25

[5]
CardioVinci: building blocks for virtual cardiac cells using deep learning.

Philos Trans R Soc Lond B Biol Sci. 2022-11-21

[6]
Weighted average ensemble-based semantic segmentation in biological electron microscopy images.

Histochem Cell Biol. 2022-11

[7]
Generative Adversarial Networks for Morphological-Temporal Classification of Stem Cell Images.

Sensors (Basel). 2021-12-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索