新型机制性 PBPK 模型,通过纳入肾小管适应和动态被动重吸收,预测不同 CKD 阶段的肾清除率。
Novel Mechanistic PBPK Model to Predict Renal Clearance in Varying Stages of CKD by Incorporating Tubular Adaptation and Dynamic Passive Reabsorption.
机构信息
Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA.
出版信息
CPT Pharmacometrics Syst Pharmacol. 2020 Oct;9(10):571-583. doi: 10.1002/psp4.12553. Epub 2020 Sep 25.
Chronic kidney disease (CKD) has significant effects on renal clearance (CL ) of drugs. Physiologically-based pharmacokinetic (PBPK) models have been used to predict CKD effects on transporter-mediated renal active secretion and CL for hydrophilic nonpermeable compounds. However, no studies have shown systematic PBPK modeling of renal passive reabsorption or CL for hydrophobic permeable drugs in CKD. The goal of this study was to expand our previously developed and verified mechanistic kidney model to develop a universal model to predict changes in CL in CKD for permeable and nonpermeable drugs that accounts for the dramatic nonlinear effect of CKD on renal passive reabsorption of permeable drugs. The developed model incorporates physiologically-based tubular changes of reduced water reabsorption/increased tubular flow rate per remaining functional nephron in CKD. The final adaptive kidney model successfully (absolute fold error (AFE) all < 2) predicted renal passive reabsorption and CL for 20 permeable and nonpermeable test compounds across the stages of CKD. In contrast, use of proportional glomerular filtration rate reduction approach without addressing tubular adaptation processes in CKD to predict CL generated unacceptable CL predictions (AFE = 2.61-7.35) for permeable compounds in severe CKD. Finally, the adaptive kidney model accurately predicted CL of para-amino-hippuric acid and memantine, two secreted compounds, in CKD, suggesting successful integration of active secretion into the model, along with passive reabsorption. In conclusion, the developed adaptive kidney model enables mechanistic predictions of in vivo CL through CKD progression without any empirical scaling factors and can be used for CL predictions prior to assessment of drug disposition in renal impairment.
慢性肾脏病(CKD)对药物的肾脏清除率(CL)有显著影响。生理相关药代动力学(PBPK)模型已被用于预测 CKD 对转运体介导的肾脏主动分泌和亲水性非渗透化合物 CL 的影响。然而,目前尚无研究系统地建立 PBPK 模型来预测 CKD 对亲脂性渗透药物的肾脏被动重吸收或 CL。本研究的目的是扩展我们之前开发和验证的机制性肾脏模型,开发一种通用模型来预测 CKD 中渗透和非渗透药物 CL 的变化,该模型考虑到 CKD 对渗透药物肾脏被动重吸收的显著非线性影响。所开发的模型纳入了 CKD 中剩余功能肾单位肾小管中水重吸收减少/肾小管流量增加的生理基础变化。最终的适应性肾脏模型成功地(绝对折叠误差(AFE)均<2)预测了 20 种渗透和非渗透测试化合物在 CKD 各个阶段的肾脏被动重吸收和 CL。相比之下,使用没有考虑 CKD 中肾小管适应过程的肾小球滤过率成比例降低方法来预测 CL,会对严重 CKD 中的渗透化合物产生不可接受的 CL 预测(AFE=2.61-7.35)。最后,适应性肾脏模型准确预测了 CKD 中两种分泌化合物对氨基马尿酸和盐酸美金刚的 CL,表明主动分泌与被动重吸收成功地整合到模型中。总之,所开发的适应性肾脏模型能够在没有任何经验缩放因子的情况下,通过 CKD 进展进行体内 CL 的机制预测,并且可以在评估药物在肾功能不全中的处置之前用于 CL 预测。