Komura Hiroshi, Watanabe Reiko, Mizuguchi Kenji
University Research Administration Center, Osaka Metropolitan University, 1-2-7 Asahimachi, Abeno-ku, Osaka 545-0051, Osaka, Japan.
Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Osaka, Japan.
Pharmaceutics. 2023 Nov 12;15(11):2619. doi: 10.3390/pharmaceutics15112619.
Drug discovery and development are aimed at identifying new chemical molecular entities (NCEs) with desirable pharmacokinetic profiles for high therapeutic efficacy. The plasma concentrations of NCEs are a biomarker of their efficacy and are governed by pharmacokinetic processes such as absorption, distribution, metabolism, and excretion (ADME). Poor ADME properties of NCEs are a major cause of attrition in drug development. ADME screening is used to identify and optimize lead compounds in the drug discovery process. Computational models predicting ADME properties have been developed with evolving model-building technologies from a simplified relationship between ADME endpoints and physicochemical properties to machine learning, including support vector machines, random forests, and convolution neural networks. Recently, in the field of in silico ADME research, there has been a shift toward evaluating the in vivo parameters or plasma concentrations of NCEs instead of using predictive results to guide chemical structure design. Another research hotspot is the establishment of a computational prediction platform to strengthen academic drug discovery. Bioinformatics projects have produced a series of in silico ADME models using free software and open-access databases. In this review, we introduce prediction models for various ADME parameters and discuss the currently available academic drug discovery platforms.
药物发现与开发旨在识别具有理想药代动力学特征的新化学分子实体(NCEs),以实现高治疗效果。NCEs的血浆浓度是其疗效的生物标志物,并受吸收、分布、代谢和排泄(ADME)等药代动力学过程的支配。NCEs不良的ADME性质是药物开发失败的主要原因。ADME筛选用于在药物发现过程中识别和优化先导化合物。随着模型构建技术的不断发展,已开发出预测ADME性质的计算模型,从ADME终点与物理化学性质之间的简化关系到机器学习,包括支持向量机、随机森林和卷积神经网络。最近,在计算机模拟ADME研究领域,已转向评估NCEs的体内参数或血浆浓度,而不是使用预测结果来指导化学结构设计。另一个研究热点是建立计算预测平台以加强学术性药物发现。生物信息学项目利用免费软件和开放获取数据库生成了一系列计算机模拟ADME模型。在本综述中,我们介绍了各种ADME参数的预测模型,并讨论了目前可用的学术性药物发现平台。