Suppr超能文献

评估在存在非单调缺失的情况下,在随机化前后测量的生物标志物对治疗效果的修饰作用。

Evaluation of treatment effect modification by biomarkers measured pre- and post-randomization in the presence of non-monotone missingness.

机构信息

Department of Biostatistics, University of Washington, Seattle, WA, USA.

出版信息

Biostatistics. 2022 Apr 13;23(2):541-557. doi: 10.1093/biostatistics/kxaa040.

Abstract

In vaccine studies, an important research question is to study effect modification of clinical treatment efficacy by intermediate biomarker-based principal strata. In settings where participants entering a trial may have prior exposure and therefore variable baseline biomarker values, clinical treatment efficacy may further depend jointly on a biomarker measured at baseline and measured at a fixed time after vaccination. This makes it important to conduct a bivariate effect modification analysis by both the intermediate biomarker-based principal strata and the baseline biomarker values. Existing research allows this assessment if the sampling of baseline and intermediate biomarkers follows a monotone pattern, i.e., if participants who have the biomarker measured post-randomization would also have the biomarker measured at baseline. However, additional complications in study design could happen in practice. For example, in a dengue correlates study, baseline biomarker values were only available from a fraction of participants who have biomarkers measured post-randomization. How to conduct the bivariate effect modification analysis in these studies remains an open research question. In this article, we propose approaches for bivariate effect modification analysis in the complicated sampling design based on an estimated likelihood framework. We demonstrate advantages of the proposed method over existing methods through numerical studies and illustrate our method with data sets from two phase 3 dengue vaccine efficacy trials.

摘要

在疫苗研究中,一个重要的研究问题是研究基于中间生物标志物的主要层的临床治疗效果的修正。在参与者进入试验时可能有先前暴露并且因此具有不同的基线生物标志物值的情况下,临床治疗效果可能进一步取决于在基线和接种疫苗后固定时间测量的生物标志物。这使得通过基于中间生物标志物的主要层和基线生物标志物值进行双变量效应修正分析变得非常重要。如果基线和中间生物标志物的采样遵循单调模式,即,如果在随机化后测量生物标志物的参与者也将在基线测量生物标志物,则现有研究允许进行这种评估。然而,在实际研究设计中可能会出现额外的复杂性。例如,在登革热相关研究中,只有一部分在随机化后测量了生物标志物的参与者才有基线生物标志物值。如何在这些研究中进行双变量效应修正分析仍然是一个悬而未决的研究问题。在本文中,我们基于估计似然框架提出了在复杂抽样设计中进行双变量效应修正分析的方法。我们通过数值研究证明了所提出方法相对于现有方法的优势,并通过来自两项 3 期登革热疫苗功效试验的数据说明了我们的方法。

相似文献

本文引用的文献

4
8
9
Evaluating candidate principal surrogate endpoints.评估候选主要替代终点。
Biometrics. 2008 Dec;64(4):1146-54. doi: 10.1111/j.1541-0420.2008.01014.x. Epub 2008 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验