Suppr超能文献

在多阶段抽样情况下评估疫苗试验中的主要替代指标。

Evaluating principal surrogate markers in vaccine trials in the presence of multiphase sampling.

作者信息

Huang Ying

机构信息

Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A.

Department of Biostatistics, University of Washington, Seattle, Washington 98109, U.S.A.

出版信息

Biometrics. 2018 Mar;74(1):27-39. doi: 10.1111/biom.12737. Epub 2017 Jun 26.

Abstract

This article focuses on the evaluation of vaccine-induced immune responses as principal surrogate markers for predicting a given vaccine's effect on the clinical endpoint of interest. To address the problem of missing potential outcomes under the principal surrogate framework, we can utilize baseline predictors of the immune biomarker(s) or vaccinate uninfected placebo recipients at the end of the trial and measure their immune biomarkers. Examples of good baseline predictors are baseline immune responses when subjects enrolled in the trial have been previously exposed to the same antigen, as in our motivating application of the Zostavax Efficacy and Safety Trial (ZEST). However, laboratory assays of these baseline predictors are expensive and therefore their subsampling among participants is commonly performed. In this article, we develop a methodology for estimating principal surrogate values in the presence of baseline predictor subsampling. Under a multiphase sampling framework, we propose a semiparametric pseudo-score estimator based on conditional likelihood and also develop several alternative semiparametric pseudo-score or estimated likelihood estimators. We derive corresponding asymptotic theories and analytic variance formulas for these estimators. Through extensive numeric studies, we demonstrate good finite sample performance of these estimators and the efficiency advantage of the proposed pseudo-score estimator in various sampling schemes. We illustrate the application of our proposed estimators using data from an immune biomarker study nested within the ZEST trial.

摘要

本文着重评估疫苗诱导的免疫反应,将其作为预测特定疫苗对感兴趣的临床终点影响的主要替代指标。为解决主要替代指标框架下潜在结果缺失的问题,我们可以利用免疫生物标志物的基线预测指标,或者在试验结束时对未感染的安慰剂接受者进行疫苗接种,并测量他们的免疫生物标志物。良好的基线预测指标的例子包括,在试验中招募的受试者先前已接触过相同抗原时的基线免疫反应,就像我们在带状疱疹重组疫苗疗效和安全性试验(ZEST)的激励性应用中那样。然而,这些基线预测指标的实验室检测成本高昂,因此通常会在参与者中进行子采样。在本文中,我们开发了一种在存在基线预测指标子采样的情况下估计主要替代指标值的方法。在多阶段抽样框架下,我们提出了一种基于条件似然的半参数伪得分估计量,并开发了几种替代的半参数伪得分或估计似然估计量。我们推导了这些估计量相应的渐近理论和分析方差公式。通过广泛的数值研究,我们证明了这些估计量在有限样本中的良好性能,以及所提出的伪得分估计量在各种抽样方案中的效率优势。我们使用ZEST试验中嵌套的免疫生物标志物研究的数据来说明我们提出的估计量的应用。

相似文献

3
Evaluating candidate principal surrogate endpoints.评估候选主要替代终点。
Biometrics. 2008 Dec;64(4):1146-54. doi: 10.1111/j.1541-0420.2008.01014.x. Epub 2008 Mar 24.
10
Estimation of the optimal surrogate based on a randomized trial.基于随机试验的最佳替代指标估计。
Biometrics. 2018 Dec;74(4):1271-1281. doi: 10.1111/biom.12879. Epub 2018 Apr 27.

引用本文的文献

本文引用的文献

7
Comparing biomarkers as principal surrogate endpoints.比较生物标志物作为主要替代终点。
Biometrics. 2011 Dec;67(4):1442-51. doi: 10.1111/j.1541-0420.2011.01603.x. Epub 2011 Apr 22.
9
Correlates of protection induced by vaccination.疫苗接种诱导的保护相关性。
Clin Vaccine Immunol. 2010 Jul;17(7):1055-65. doi: 10.1128/CVI.00131-10. Epub 2010 May 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验