Huang Ying
Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A.
Department of Biostatistics, University of Washington, Seattle, Washington 98109, U.S.A.
Biometrics. 2018 Mar;74(1):27-39. doi: 10.1111/biom.12737. Epub 2017 Jun 26.
This article focuses on the evaluation of vaccine-induced immune responses as principal surrogate markers for predicting a given vaccine's effect on the clinical endpoint of interest. To address the problem of missing potential outcomes under the principal surrogate framework, we can utilize baseline predictors of the immune biomarker(s) or vaccinate uninfected placebo recipients at the end of the trial and measure their immune biomarkers. Examples of good baseline predictors are baseline immune responses when subjects enrolled in the trial have been previously exposed to the same antigen, as in our motivating application of the Zostavax Efficacy and Safety Trial (ZEST). However, laboratory assays of these baseline predictors are expensive and therefore their subsampling among participants is commonly performed. In this article, we develop a methodology for estimating principal surrogate values in the presence of baseline predictor subsampling. Under a multiphase sampling framework, we propose a semiparametric pseudo-score estimator based on conditional likelihood and also develop several alternative semiparametric pseudo-score or estimated likelihood estimators. We derive corresponding asymptotic theories and analytic variance formulas for these estimators. Through extensive numeric studies, we demonstrate good finite sample performance of these estimators and the efficiency advantage of the proposed pseudo-score estimator in various sampling schemes. We illustrate the application of our proposed estimators using data from an immune biomarker study nested within the ZEST trial.
本文着重评估疫苗诱导的免疫反应,将其作为预测特定疫苗对感兴趣的临床终点影响的主要替代指标。为解决主要替代指标框架下潜在结果缺失的问题,我们可以利用免疫生物标志物的基线预测指标,或者在试验结束时对未感染的安慰剂接受者进行疫苗接种,并测量他们的免疫生物标志物。良好的基线预测指标的例子包括,在试验中招募的受试者先前已接触过相同抗原时的基线免疫反应,就像我们在带状疱疹重组疫苗疗效和安全性试验(ZEST)的激励性应用中那样。然而,这些基线预测指标的实验室检测成本高昂,因此通常会在参与者中进行子采样。在本文中,我们开发了一种在存在基线预测指标子采样的情况下估计主要替代指标值的方法。在多阶段抽样框架下,我们提出了一种基于条件似然的半参数伪得分估计量,并开发了几种替代的半参数伪得分或估计似然估计量。我们推导了这些估计量相应的渐近理论和分析方差公式。通过广泛的数值研究,我们证明了这些估计量在有限样本中的良好性能,以及所提出的伪得分估计量在各种抽样方案中的效率优势。我们使用ZEST试验中嵌套的免疫生物标志物研究的数据来说明我们提出的估计量的应用。