Suppr超能文献

统计可识别性与替代终点问题及其在疫苗试验中的应用。

Statistical identifiability and the surrogate endpoint problem, with application to vaccine trials.

作者信息

Wolfson Julian, Gilbert Peter

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington 98195-7232, USA.

出版信息

Biometrics. 2010 Dec;66(4):1153-61. doi: 10.1111/j.1541-0420.2009.01380.x.

Abstract

Given a randomized treatment Z, a clinical outcome Y, and a biomarker S measured some fixed time after Z is administered, we may be interested in addressing the surrogate endpoint problem by evaluating whether S can be used to reliably predict the effect of Z on Y. Several recent proposals for the statistical evaluation of surrogate value have been based on the framework of principal stratification. In this article, we consider two principal stratification estimands: joint risks and marginal risks. Joint risks measure causal associations (CAs) of treatment effects on S and Y, providing insight into the surrogate value of the biomarker, but are not statistically identifiable from vaccine trial data. Although marginal risks do not measure CAs of treatment effects, they nevertheless provide guidance for future research, and we describe a data collection scheme and assumptions under which the marginal risks are statistically identifiable. We show how different sets of assumptions affect the identifiability of these estimands; in particular, we depart from previous work by considering the consequences of relaxing the assumption of no individual treatment effects on Y before S is measured. Based on algebraic relationships between joint and marginal risks, we propose a sensitivity analysis approach for assessment of surrogate value, and show that in many cases the surrogate value of a biomarker may be hard to establish, even when the sample size is large.

摘要

给定一个随机治疗Z、一个临床结局Y以及在给予Z后某个固定时间测量的生物标志物S,我们可能会有兴趣通过评估S是否可用于可靠地预测Z对Y的影响来解决替代终点问题。最近一些关于替代值统计评估的提议是基于主分层框架。在本文中,我们考虑两个主分层估计量:联合风险和边际风险。联合风险衡量治疗对S和Y的因果关联(CA),有助于洞察生物标志物的替代价值,但从疫苗试验数据中无法进行统计识别。虽然边际风险不衡量治疗效果的CA,但它们仍为未来研究提供指导,并且我们描述了一种数据收集方案和假设,在这些假设下边际风险是可统计识别的。我们展示了不同的假设集如何影响这些估计量的可识别性;特别是,我们与之前的工作不同,考虑了在测量S之前放宽对Y无个体治疗效果这一假设的后果。基于联合风险和边际风险之间的代数关系,我们提出了一种用于评估替代价值的敏感性分析方法,并表明在许多情况下,即使样本量很大,生物标志物的替代价值也可能难以确定。

相似文献

1
Statistical identifiability and the surrogate endpoint problem, with application to vaccine trials.
Biometrics. 2010 Dec;66(4):1153-61. doi: 10.1111/j.1541-0420.2009.01380.x.
3
Evaluating candidate principal surrogate endpoints.
Biometrics. 2008 Dec;64(4):1146-54. doi: 10.1111/j.1541-0420.2008.01014.x. Epub 2008 Mar 24.
4
Design and estimation for evaluating principal surrogate markers in vaccine trials.
Biometrics. 2013 Jun;69(2):301-9. doi: 10.1111/biom.12014. Epub 2013 Feb 14.
5
SENSITIVITY ANALYSIS FOR EVALUATING PRINCIPAL SURROGATE ENDPOINTS RELAXING THE EQUAL EARLY CLINICAL RISK ASSUMPTION.
Ann Appl Stat. 2022 Sep;16(3):1774-1794. doi: 10.1214/21-aoas1566. Epub 2022 Jul 19.
6
Surrogacy assessment using principal stratification when surrogate and outcome measures are multivariate normal.
Biostatistics. 2014 Apr;15(2):266-83. doi: 10.1093/biostatistics/kxt051. Epub 2013 Nov 26.
7
Evaluating principal surrogate markers in vaccine trials in the presence of multiphase sampling.
Biometrics. 2018 Mar;74(1):27-39. doi: 10.1111/biom.12737. Epub 2017 Jun 26.
8
Sharp bounds on causal effects using a surrogate endpoint.
Stat Med. 2013 Nov 10;32(25):4338-47. doi: 10.1002/sim.5873. Epub 2013 Jun 11.
9
Statistical evaluation of surrogate endpoints with examples from cancer clinical trials.
Biom J. 2016 Jan;58(1):104-32. doi: 10.1002/bimj.201400049. Epub 2015 Feb 12.
10
A Bayesian approach to improved estimation of causal effect predictiveness for a principal surrogate endpoint.
Biometrics. 2012 Sep;68(3):922-32. doi: 10.1111/j.1541-0420.2011.01736.x. Epub 2012 Feb 20.

引用本文的文献

3
SENSITIVITY ANALYSIS FOR EVALUATING PRINCIPAL SURROGATE ENDPOINTS RELAXING THE EQUAL EARLY CLINICAL RISK ASSUMPTION.
Ann Appl Stat. 2022 Sep;16(3):1774-1794. doi: 10.1214/21-aoas1566. Epub 2022 Jul 19.
5
Translating questions to estimands in randomized clinical trials with intercurrent events.
Stat Med. 2022 Jul 20;41(16):3211-3228. doi: 10.1002/sim.9398. Epub 2022 May 16.
6
Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials.
Stat Biosci. 2019 Dec;11(3):504-523. doi: 10.1007/s12561-019-09239-1. Epub 2019 Apr 23.
8
Evaluating the surrogacy of multiple vaccine-induced immune response biomarkers in HIV vaccine trials.
Biostatistics. 2021 Apr 10;22(2):421-436. doi: 10.1093/biostatistics/kxz039.
9
Simultaneous Inference of Treatment Effect Modification by Intermediate Response Endpoint Principal Strata with Application to Vaccine Trials.
Int J Biostat. 2019 Jul 2;16(1):/j/ijb.2020.16.issue-1/ijb-2018-0058/ijb-2018-0058.xml. doi: 10.1515/ijb-2018-0058.
10
Predictive cluster level surrogacy in the presence of interference.
Biostatistics. 2020 Apr 1;21(2):e33-e46. doi: 10.1093/biostatistics/kxy050.

本文引用的文献

1
Toward Causal Inference With Interference.
J Am Stat Assoc. 2008 Jun;103(482):832-842. doi: 10.1198/016214508000000292.
3
Related causal frameworks for surrogate outcomes.
Biometrics. 2009 Jun;65(2):530-8. doi: 10.1111/j.1541-0420.2008.01106.x.
4
Evaluating candidate principal surrogate endpoints.
Biometrics. 2008 Dec;64(4):1146-54. doi: 10.1111/j.1541-0420.2008.01014.x. Epub 2008 Mar 24.
5
Evaluating a surrogate endpoint at three levels, with application to vaccine development.
Stat Med. 2008 Oct 15;27(23):4758-78. doi: 10.1002/sim.3122.
6
Augmented designs to assess immune response in vaccine trials.
Biometrics. 2006 Dec;62(4):1161-9. doi: 10.1111/j.1541-0420.2006.00569.x.
7
Statistical evaluation of biomarkers as surrogate endpoints: a literature review.
Stat Med. 2006 Jan 30;25(2):183-203. doi: 10.1002/sim.2319.
8
T cell development and receptor diversity during aging.
Curr Opin Immunol. 2005 Oct;17(5):468-75. doi: 10.1016/j.coi.2005.07.020.
10
The validation of surrogate endpoints in meta-analyses of randomized experiments.
Biostatistics. 2000 Mar;1(1):49-67. doi: 10.1093/biostatistics/1.1.49.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验