Suppr超能文献

统计可识别性与替代终点问题及其在疫苗试验中的应用。

Statistical identifiability and the surrogate endpoint problem, with application to vaccine trials.

作者信息

Wolfson Julian, Gilbert Peter

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington 98195-7232, USA.

出版信息

Biometrics. 2010 Dec;66(4):1153-61. doi: 10.1111/j.1541-0420.2009.01380.x.

Abstract

Given a randomized treatment Z, a clinical outcome Y, and a biomarker S measured some fixed time after Z is administered, we may be interested in addressing the surrogate endpoint problem by evaluating whether S can be used to reliably predict the effect of Z on Y. Several recent proposals for the statistical evaluation of surrogate value have been based on the framework of principal stratification. In this article, we consider two principal stratification estimands: joint risks and marginal risks. Joint risks measure causal associations (CAs) of treatment effects on S and Y, providing insight into the surrogate value of the biomarker, but are not statistically identifiable from vaccine trial data. Although marginal risks do not measure CAs of treatment effects, they nevertheless provide guidance for future research, and we describe a data collection scheme and assumptions under which the marginal risks are statistically identifiable. We show how different sets of assumptions affect the identifiability of these estimands; in particular, we depart from previous work by considering the consequences of relaxing the assumption of no individual treatment effects on Y before S is measured. Based on algebraic relationships between joint and marginal risks, we propose a sensitivity analysis approach for assessment of surrogate value, and show that in many cases the surrogate value of a biomarker may be hard to establish, even when the sample size is large.

摘要

给定一个随机治疗Z、一个临床结局Y以及在给予Z后某个固定时间测量的生物标志物S,我们可能会有兴趣通过评估S是否可用于可靠地预测Z对Y的影响来解决替代终点问题。最近一些关于替代值统计评估的提议是基于主分层框架。在本文中,我们考虑两个主分层估计量:联合风险和边际风险。联合风险衡量治疗对S和Y的因果关联(CA),有助于洞察生物标志物的替代价值,但从疫苗试验数据中无法进行统计识别。虽然边际风险不衡量治疗效果的CA,但它们仍为未来研究提供指导,并且我们描述了一种数据收集方案和假设,在这些假设下边际风险是可统计识别的。我们展示了不同的假设集如何影响这些估计量的可识别性;特别是,我们与之前的工作不同,考虑了在测量S之前放宽对Y无个体治疗效果这一假设的后果。基于联合风险和边际风险之间的代数关系,我们提出了一种用于评估替代价值的敏感性分析方法,并表明在许多情况下,即使样本量很大,生物标志物的替代价值也可能难以确定。

相似文献

3
Evaluating candidate principal surrogate endpoints.评估候选主要替代终点。
Biometrics. 2008 Dec;64(4):1146-54. doi: 10.1111/j.1541-0420.2008.01014.x. Epub 2008 Mar 24.
8
Sharp bounds on causal effects using a surrogate endpoint.使用替代终点对因果效应的精确界限
Stat Med. 2013 Nov 10;32(25):4338-47. doi: 10.1002/sim.5873. Epub 2013 Jun 11.

引用本文的文献

10
Predictive cluster level surrogacy in the presence of interference.存在干扰时的预测性簇级替代。
Biostatistics. 2020 Apr 1;21(2):e33-e46. doi: 10.1093/biostatistics/kxy050.

本文引用的文献

1
Toward Causal Inference With Interference.迈向具有干扰性的因果推断
J Am Stat Assoc. 2008 Jun;103(482):832-842. doi: 10.1198/016214508000000292.
3
Related causal frameworks for surrogate outcomes.替代结局的相关因果框架。
Biometrics. 2009 Jun;65(2):530-8. doi: 10.1111/j.1541-0420.2008.01106.x.
4
Evaluating candidate principal surrogate endpoints.评估候选主要替代终点。
Biometrics. 2008 Dec;64(4):1146-54. doi: 10.1111/j.1541-0420.2008.01014.x. Epub 2008 Mar 24.
8
T cell development and receptor diversity during aging.衰老过程中的T细胞发育与受体多样性
Curr Opin Immunol. 2005 Oct;17(5):468-75. doi: 10.1016/j.coi.2005.07.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验