Suppr超能文献

通过狄利克雷过程混合模型进行嵌套联合聚类。

The nested joint clustering via Dirichlet process mixture model.

作者信息

Han Shengtong, Zhang Hongmei, Sheng Wenhui, Arshad Hasan

机构信息

Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, Milwaukee, WI.

School of Public Health, University of Memphis, Memphis, TN.

出版信息

J Stat Comput Simul. 2019;89(5):815-830. doi: 10.1080/00949655.2019.1572756. Epub 2019 Jan 28.

Abstract

This article focuses on the clustering problem based on Dirichlet process (DP) mixtures. To model both time invariant and temporal patterns, different from other existing clustering methods, the proposed semi-parametric model is flexible in that both the common and unique patterns are taken into account simultaneously. Furthermore, by jointly clustering subjects and the associated variables, the intrinsic complex shared patterns among subjects and among variables are expected to be captured. The number of clusters and cluster assignments are directly inferred with the use of DP. Simulation studies illustrate the effectiveness of the proposed method. An application to wheal size data is discussed with an aim of identifying novel temporal patterns among allergens within subject clusters.

摘要

本文聚焦于基于狄利克雷过程(DP)混合模型的聚类问题。为了对时不变模式和时间模式进行建模,与其他现有聚类方法不同,所提出的半参数模型具有灵活性,因为它能同时考虑共同模式和独特模式。此外,通过对个体和相关变量进行联合聚类,有望捕捉个体之间以及变量之间内在的复杂共享模式。利用DP直接推断聚类的数量和聚类分配。模拟研究说明了所提方法的有效性。讨论了在风团大小数据上的应用,目的是识别个体聚类内过敏原之间新的时间模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8f9/7518504/37d0483c2141/nihms-1536972-f0001.jpg

相似文献

1
The nested joint clustering via Dirichlet process mixture model.通过狄利克雷过程混合模型进行嵌套联合聚类。
J Stat Comput Simul. 2019;89(5):815-830. doi: 10.1080/00949655.2019.1572756. Epub 2019 Jan 28.
2
Joint clustering with correlated variables.与相关变量的联合聚类
Am Stat. 2019;73(3):296-306. doi: 10.1080/00031305.2018.1424033. Epub 2018 Jul 9.
8
A Nonparametric Bayesian Model for Nested Clustering.用于嵌套聚类的非参数贝叶斯模型
Methods Mol Biol. 2016;1362:129-41. doi: 10.1007/978-1-4939-3106-4_8.
9
The Supervised Hierarchical Dirichlet Process.监督分层狄利克雷过程。
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):243-55. doi: 10.1109/TPAMI.2014.2315802.
10
Clustering compositional data using Dirichlet mixture model.使用狄利克雷混合模型对组合数据进行聚类。
PLoS One. 2022 May 18;17(5):e0268438. doi: 10.1371/journal.pone.0268438. eCollection 2022.

本文引用的文献

1
Adjusting background noise in cluster analyses of longitudinal data.在纵向数据的聚类分析中调整背景噪声。
Comput Stat Data Anal. 2017 May;109:93-104. doi: 10.1016/j.csda.2016.11.009. Epub 2016 Nov 27.
2
Identifying Activation Centers with Spatial Cox Point Processes Using fMRI Data.利用功能磁共振成像数据通过空间考克斯点过程识别激活中心。
IEEE/ACM Trans Comput Biol Bioinform. 2016 Nov-Dec;13(6):1130-1141. doi: 10.1109/TCBB.2015.2510007. Epub 2015 Dec 17.
4
KmL: a package to cluster longitudinal data.KmL:用于聚类纵向数据的软件包。
Comput Methods Programs Biomed. 2011 Dec;104(3):e112-21. doi: 10.1016/j.cmpb.2011.05.008. Epub 2011 Jun 25.
5
Bayesian biclustering of gene expression data.基因表达数据的贝叶斯双聚类分析
BMC Genomics. 2008;9 Suppl 1(Suppl 1):S4. doi: 10.1186/1471-2164-9-S1-S4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验