Suppr超能文献

利用功能磁共振成像数据通过空间考克斯点过程识别激活中心。

Identifying Activation Centers with Spatial Cox Point Processes Using fMRI Data.

作者信息

Ray Meredith, Kang Jian, Zhang Hongmei

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2016 Nov-Dec;13(6):1130-1141. doi: 10.1109/TCBB.2015.2510007. Epub 2015 Dec 17.

Abstract

We developed a Bayesian clustering method to identify significant regions of brain activation. Coordinate-based meta data originating from functional magnetic resonance imaging (fMRI) were of primary interest. Individual fMRI has the ability to measure the intensity of blood flow and oxygen to a location within the brain that was activated by a given thought or emotion. The proposed method performed clustering on two levels, latent foci center and study activation center, with a spatial Cox point process utilizing the Dirichlet process to describe the distribution of foci. Intensity was modeled as a function of distance between the focus and the center of the cluster of foci using a Gaussian kernel. Simulation studies were conducted to evaluate the sensitivity and robustness of the method with respect to cluster identification and underlying data distributions. We applied the method to a meta data set to identify emotion foci centers.

摘要

我们开发了一种贝叶斯聚类方法来识别大脑激活的显著区域。源自功能磁共振成像(fMRI)的基于坐标的元数据是主要关注点。个体功能磁共振成像能够测量由特定思想或情绪激活的大脑内某一位置的血流和氧气强度。所提出的方法在两个层面上进行聚类,即潜在焦点中心和研究激活中心,使用狄利克雷过程的空间考克斯点过程来描述焦点的分布。强度使用高斯核建模为焦点与焦点聚类中心之间距离的函数。进行了模拟研究以评估该方法在聚类识别和基础数据分布方面的敏感性和稳健性。我们将该方法应用于一个元数据集以识别情绪焦点中心。

相似文献

1
Identifying Activation Centers with Spatial Cox Point Processes Using fMRI Data.
IEEE/ACM Trans Comput Biol Bioinform. 2016 Nov-Dec;13(6):1130-1141. doi: 10.1109/TCBB.2015.2510007. Epub 2015 Dec 17.
2
Spatially adaptive mixture modeling for analysis of FMRI time series.
IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74. doi: 10.1109/TMI.2010.2042064. Epub 2010 Mar 25.
3
Revisiting multi-subject random effects in fMRI: advocating prevalence estimation.
Neuroimage. 2014 Jan 1;84:113-21. doi: 10.1016/j.neuroimage.2013.08.025. Epub 2013 Aug 26.
4
A sparse and spatially constrained generative regression model for fMRI data analysis.
IEEE Trans Biomed Eng. 2012 Jan;59(1):58-67. doi: 10.1109/TBME.2010.2104321. Epub 2011 Jan 6.
5
Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization.
Neuroimage. 2009 Jan 15;44(2):411-20. doi: 10.1016/j.neuroimage.2008.08.043. Epub 2008 Sep 23.
6
Fully Bayesian spatio-temporal modeling of FMRI data.
IEEE Trans Med Imaging. 2004 Feb;23(2):213-31. doi: 10.1109/TMI.2003.823065.
7
fMRI data analysis with nonstationary noise models: a Bayesian approach.
IEEE Trans Biomed Eng. 2007 Sep;54(9):1621-30. doi: 10.1109/TBME.2007.902591.
8
Probabilistic framework for brain connectivity from functional MR images.
IEEE Trans Med Imaging. 2008 Jun;27(6):825-33. doi: 10.1109/TMI.2008.915672.
9
Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
Neuroimage. 2014 Aug 1;96:117-32. doi: 10.1016/j.neuroimage.2014.03.074. Epub 2014 Apr 4.

引用本文的文献

1
SPARTIN: a Bayesian method for the quantification and characterization of cell type interactions in spatial pathology data.
Front Genet. 2023 May 18;14:1175603. doi: 10.3389/fgene.2023.1175603. eCollection 2023.
2
The nested joint clustering via Dirichlet process mixture model.
J Stat Comput Simul. 2019;89(5):815-830. doi: 10.1080/00949655.2019.1572756. Epub 2019 Jan 28.

本文引用的文献

1
Activation likelihood estimation meta-analysis revisited.
Neuroimage. 2012 Feb 1;59(3):2349-61. doi: 10.1016/j.neuroimage.2011.09.017. Epub 2011 Sep 22.
2
Meta Analysis of Functional Neuroimaging Data via Bayesian Spatial Point Processes.
J Am Stat Assoc. 2011 Mar 1;106(493):124-134. doi: 10.1198/jasa.2011.ap09735.
3
Minimizing within-experiment and within-group effects in Activation Likelihood Estimation meta-analyses.
Hum Brain Mapp. 2012 Jan;33(1):1-13. doi: 10.1002/hbm.21186. Epub 2011 Feb 8.
4
Functional volumes modeling: theory and preliminary assessment.
Hum Brain Mapp. 1997;5(4):306-11. doi: 10.1002/(SICI)1097-0193(1997)5:4<306::AID-HBM17>3.0.CO;2-B.
6
Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies.
Neuroimage. 2009 Apr 15;45(3):810-23. doi: 10.1016/j.neuroimage.2008.12.039. Epub 2008 Dec 31.
7
Meta-analysis of functional neuroimaging data: current and future directions.
Soc Cogn Affect Neurosci. 2007 Jun;2(2):150-8. doi: 10.1093/scan/nsm015.
8
Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies.
Neuroimage. 2008 Aug 15;42(2):998-1031. doi: 10.1016/j.neuroimage.2008.03.059. Epub 2008 Apr 11.
9
What we can do and what we cannot do with fMRI.
Nature. 2008 Jun 12;453(7197):869-78. doi: 10.1038/nature06976.
10
Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses.
Neuroimage. 2007 Mar;35(1):105-20. doi: 10.1016/j.neuroimage.2006.11.054. Epub 2007 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验