Suppr超能文献

机器学习在心脏电生理学中的应用。

Applications of Machine Learning in Cardiac Electrophysiology.

作者信息

Muthalaly Rahul G, Evans Robert M

机构信息

Monash Health, Melbourne, Australia.

出版信息

Arrhythm Electrophysiol Rev. 2020 Aug;9(2):71-77. doi: 10.15420/aer.2019.19.

Abstract

Artificial intelligence through machine learning (ML) methods is becoming prevalent throughout the world, with increasing adoption in healthcare. Improvements in technology have allowed early applications of machine learning to assist physician efficiency and diagnostic accuracy. In electrophysiology, ML has applications for use in every stage of patient care. However, its use is still in infancy. This article will introduce the potential of ML, before discussing the concept of big data and its pitfalls. The authors review some common ML methods including supervised and unsupervised learning, then examine applications in cardiac electrophysiology. This will focus on surface electrocardiography, intracardiac mapping and cardiac implantable electronic devices. Finally, the article concludes with an overview of how ML may impact on electrophysiology in the future.

摘要

通过机器学习(ML)方法实现的人工智能在全球正变得越来越普遍,在医疗保健领域的应用也日益增多。技术的进步使得机器学习能够早期应用,以提高医生的工作效率和诊断准确性。在电生理学中,机器学习在患者护理的各个阶段都有应用。然而,其应用仍处于起步阶段。本文将先介绍机器学习的潜力,然后讨论大数据的概念及其陷阱。作者回顾了一些常见的机器学习方法,包括监督学习和无监督学习,接着研究其在心脏电生理学中的应用。这将聚焦于体表心电图、心内标测和心脏植入式电子设备。最后,本文概述了机器学习未来可能对电生理学产生的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cef/7491064/f2b355fb8542/aer-09-71-g001.jpg

相似文献

1
Applications of Machine Learning in Cardiac Electrophysiology.
Arrhythm Electrophysiol Rev. 2020 Aug;9(2):71-77. doi: 10.15420/aer.2019.19.
2
Primer on Machine Learning in Electrophysiology.
Arrhythm Electrophysiol Rev. 2023 Mar 28;12:e06. doi: 10.15420/aer.2022.43. eCollection 2023.
3
Artificial intelligence in the diagnosis and management of arrhythmias.
Eur Heart J. 2021 Oct 7;42(38):3904-3916. doi: 10.1093/eurheartj/ehab544.
4
Applied machine learning and artificial intelligence in rheumatology.
Rheumatol Adv Pract. 2020 Feb 19;4(1):rkaa005. doi: 10.1093/rap/rkaa005. eCollection 2020.
5
Big data, machine learning, and artificial intelligence: a field guide for neurosurgeons.
J Neurosurg. 2020 Oct 2;135(2):373-383. doi: 10.3171/2020.5.JNS201288. Print 2021 Aug 1.
6
Machine Meets Biology: a Primer on Artificial Intelligence in Cardiology and Cardiac Imaging.
Curr Cardiol Rep. 2018 Oct 18;20(12):139. doi: 10.1007/s11886-018-1074-8.
7
Applications of Artificial Intelligence in Cardiology. The Future is Already Here.
Rev Esp Cardiol (Engl Ed). 2019 Dec;72(12):1065-1075. doi: 10.1016/j.rec.2019.05.014. Epub 2019 Oct 12.
8
From Machine Learning to Artificial Intelligence Applications in Cardiac Care.
Circulation. 2018 Nov 27;138(22):2569-2575. doi: 10.1161/CIRCULATIONAHA.118.031734.
9
Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives.
Am J Kidney Dis. 2019 Dec;74(6):803-810. doi: 10.1053/j.ajkd.2019.05.020. Epub 2019 Aug 23.
10
Artificial intelligence and machine learning | applications in musculoskeletal physiotherapy.
Musculoskelet Sci Pract. 2019 Feb;39:164-169. doi: 10.1016/j.msksp.2018.11.012. Epub 2018 Nov 23.

引用本文的文献

3
Recent Advances in Managing Spinal Intervertebral Discs Degeneration.
Int J Mol Sci. 2022 Jun 9;23(12):6460. doi: 10.3390/ijms23126460.
4
Clinical Applications of Artificial Intelligence-An Updated Overview.
J Clin Med. 2022 Apr 18;11(8):2265. doi: 10.3390/jcm11082265.
5
Clinical Utility of Body Surface Potential Mapping in CRT Patients.
Arrhythm Electrophysiol Rev. 2021 Jul;10(2):113-119. doi: 10.15420/aer.2021.14.
6
Machine Learning in Arrhythmia and Electrophysiology.
Circ Res. 2021 Feb 19;128(4):544-566. doi: 10.1161/CIRCRESAHA.120.317872. Epub 2021 Feb 18.

本文引用的文献

1
Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation.
N Engl J Med. 2019 Nov 14;381(20):1909-1917. doi: 10.1056/NEJMoa1901183.
2
Understanding AF Mechanisms Through Computational Modelling and Simulations.
Arrhythm Electrophysiol Rev. 2019 Jul;8(3):210-219. doi: 10.15420/aer.2019.28.2.
3
Addressing challenges of quantitative methodologies and event interpretation in the study of atrial fibrillation.
Comput Methods Programs Biomed. 2019 Sep;178:113-122. doi: 10.1016/j.cmpb.2019.06.017. Epub 2019 Jun 15.
4
Machine Learning Prediction of Response to Cardiac Resynchronization Therapy: Improvement Versus Current Guidelines.
Circ Arrhythm Electrophysiol. 2019 Jul;12(7):e007316. doi: 10.1161/CIRCEP.119.007316. Epub 2019 Jun 20.
5
Validation of a smartphone-based electrocardiography in the screening of QT intervals in children.
North Clin Istanb. 2019 Feb 12;6(1):48-52. doi: 10.14744/nci.2018.44452. eCollection 2019.
6
Smartwatch Performance for the Detection and Quantification of Atrial Fibrillation.
Circ Arrhythm Electrophysiol. 2019 Jun;12(6):e006834. doi: 10.1161/CIRCEP.118.006834.
7
Digital pathology and artificial intelligence.
Lancet Oncol. 2019 May;20(5):e253-e261. doi: 10.1016/S1470-2045(19)30154-8.
8
Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram.
JAMA Cardiol. 2019 May 1;4(5):428-436. doi: 10.1001/jamacardio.2019.0640.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验