Suppr超能文献

机器学习在心律失常和电生理学中的应用。

Machine Learning in Arrhythmia and Electrophysiology.

机构信息

Department of Biomedical Engineering (N.A.T., J.K.S.), Johns Hopkins University, Baltimore, MD.

Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine (N.A.T., D.M.P., J.K.S.), Johns Hopkins University, Baltimore, MD.

出版信息

Circ Res. 2021 Feb 19;128(4):544-566. doi: 10.1161/CIRCRESAHA.120.317872. Epub 2021 Feb 18.

Abstract

Machine learning (ML), a branch of artificial intelligence, where machines learn from big data, is at the crest of a technological wave of change sweeping society. Cardiovascular medicine is at the forefront of many ML applications, and there is a significant effort to bring them into mainstream clinical practice. In the field of cardiac electrophysiology, ML applications have also seen a rapid growth and popularity, particularly the use of ML in the automatic interpretation of ECGs, which has been extensively covered in the literature. Much lesser known are the other aspects of ML application in cardiac electrophysiology and arrhythmias, such as those in basic science research on arrhythmia mechanisms, both experimental and computational; in the development of better techniques for mapping of cardiac electrical function; and in translational research related to arrhythmia management. In the current review, we examine comprehensively such ML applications as they match the scope of this journal. The current review is organized in 3 parts. The first provides an overview of general ML principles and methodologies that will afford readers of the necessary information on the subject, serving as the foundation for inviting further ML applications in arrhythmia research. The basic information we provide can serve as a guide on how one might design and conduct an ML study. The second part is a review of arrhythmia and electrophysiology studies in which ML has been utilized, highlighting the broad potential of ML approaches. For each subject, we outline comprehensively the general topics, while reviewing some of the research advances utilizing ML under the subject. Finally, we discuss the main challenges and the perspectives for ML-driven cardiac electrophysiology and arrhythmia research.

摘要

机器学习(ML)是人工智能的一个分支,其中机器从大数据中学习,处于席卷社会的技术变革浪潮的前沿。心血管医学处于许多 ML 应用的前沿,并且正在努力将它们引入主流临床实践。在心脏电生理学领域,ML 应用也迅速发展和普及,特别是在自动解释心电图方面的应用,这在文献中已有广泛报道。但鲜为人知的是 ML 在心脏电生理学和心律失常中的其他应用方面,例如心律失常机制的基础科学研究中的应用,包括实验和计算;在心脏电功能绘图技术的开发中的应用;以及与心律失常管理相关的转化研究。在当前的综述中,我们全面检查了这些 ML 应用,因为它们符合本杂志的范围。当前的综述分为 3 部分。第一部分提供了一般 ML 原理和方法的概述,为读者提供了关于该主题的必要信息,为邀请心律失常研究中的进一步 ML 应用提供了基础。我们提供的基本信息可以作为如何设计和进行 ML 研究的指南。第二部分是对已经利用 ML 的心律失常和电生理学研究的综述,强调了 ML 方法的广泛潜力。对于每个主题,我们全面概述了一般主题,同时回顾了一些利用主题下的 ML 进行的研究进展。最后,我们讨论了 ML 驱动的心脏电生理学和心律失常研究的主要挑战和前景。

相似文献

1
Machine Learning in Arrhythmia and Electrophysiology.
Circ Res. 2021 Feb 19;128(4):544-566. doi: 10.1161/CIRCRESAHA.120.317872. Epub 2021 Feb 18.
2
Role of Machine Learning and Artificial Intelligence in Arrhythmias and Electrophysiology.
Cardiol Rev. 2024 May 18. doi: 10.1097/CRD.0000000000000715.
3
Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology.
Circ Arrhythm Electrophysiol. 2020 Aug;13(8):e007952. doi: 10.1161/CIRCEP.119.007952. Epub 2020 Jul 6.
4
Primer on Machine Learning in Electrophysiology.
Arrhythm Electrophysiol Rev. 2023 Mar 28;12:e06. doi: 10.15420/aer.2022.43. eCollection 2023.
5
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
6
The Role of Artificial Intelligence and Machine Learning in Clinical Cardiac Electrophysiology.
Can J Cardiol. 2022 Feb;38(2):246-258. doi: 10.1016/j.cjca.2021.07.016. Epub 2021 Jul 29.
7
Electrophysiology and ablation of arrhythmias.
Br J Hosp Med (Lond). 2012 Jun;73(6):312-8. doi: 10.12968/hmed.2012.73.6.312.
8
Electrophysiologic testing.
Dimens Crit Care Nurs. 2003 Jan-Feb;22(1):10-9. doi: 10.1097/00003465-200301000-00003.
9
Noninvasive imaging of cardiac electrophysiology and arrhythmia.
Ann N Y Acad Sci. 2010 Feb;1188:214-21. doi: 10.1111/j.1749-6632.2009.05103.x.
10
Digital Health and the Care of the Patient With Arrhythmia: What Every Electrophysiologist Needs to Know.
Circ Arrhythm Electrophysiol. 2020 Nov;13(11):e007953. doi: 10.1161/CIRCEP.120.007953. Epub 2020 Oct 6.

引用本文的文献

1
The Electrophysiology Lab of the Future.
J Innov Card Rhythm Manag. 2025 Aug 15;16(8):6391-6397. doi: 10.19102/icrm.2025.16081. eCollection 2025 Aug.
2
The computational model lifecycle: Opportunities and challenges for computational medicine in the healthcare ecosystem.
Sci Prog. 2025 Jul-Sep;108(3):368504251344145. doi: 10.1177/00368504251344145. Epub 2025 Sep 1.
3
Precise Electromagnetic Modulation of the Cell Cycle and Its Applications in Cancer Therapy.
Int J Mol Sci. 2025 May 7;26(9):4445. doi: 10.3390/ijms26094445.
4
Computational modelling of biological systems now and then: revisiting tools and visions from the beginning of the century.
Philos Trans A Math Phys Eng Sci. 2025 May 8;383(2296):20230384. doi: 10.1098/rsta.2023.0384.
6
Comparing ECG Lead Subsets for Heart Arrhythmia/ECG Pattern Classification: Convolutional Neural Networks and Random Forest.
CJC Open. 2024 Nov 8;7(2):176-186. doi: 10.1016/j.cjco.2024.10.012. eCollection 2025 Feb.
7
Artificial Intelligence in the Heart of Medicine: A Systematic Approach to Transforming Arrhythmia Care with Intelligent Systems.
Curr Cardiol Rev. 2025;21(4):e1573403X334095. doi: 10.2174/011573403X334095241205041550.
9
10
Analysis of complex excitation patterns using Feynman-like diagrams.
Sci Rep. 2024 Nov 22;14(1):28962. doi: 10.1038/s41598-024-73544-z.

本文引用的文献

1
A deep learning algorithm to translate and classify cardiac electrophysiology.
Elife. 2021 Jul 2;10:e68335. doi: 10.7554/eLife.68335.
2
Machine Learned Cellular Phenotypes in Cardiomyopathy Predict Sudden Death.
Circ Res. 2021 Jan 22;128(2):172-184. doi: 10.1161/CIRCRESAHA.120.317345. Epub 2020 Nov 10.
5
Applications of Machine Learning in Cardiac Electrophysiology.
Arrhythm Electrophysiol Rev. 2020 Aug;9(2):71-77. doi: 10.15420/aer.2019.19.
6
Optical Mapping-Validated Machine Learning Improves Atrial Fibrillation Driver Detection by Multi-Electrode Mapping.
Circ Arrhythm Electrophysiol. 2020 Oct;13(10):e008249. doi: 10.1161/CIRCEP.119.008249. Epub 2020 Sep 13.
9
Toward Task Autonomy in Robotic Cardiac Ablation: Learning-Based Kinematic Control of Soft Tendon-Driven Catheters.
Soft Robot. 2021 Jun;8(3):340-351. doi: 10.1089/soro.2020.0006. Epub 2020 Jul 14.
10
Wireless monitoring and real-time adaptive predictive indicator of deterioration.
Sci Rep. 2020 Jul 9;10(1):11366. doi: 10.1038/s41598-020-67835-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验