Yang Jing-Hua, Li Yedan, Azad Roya, Azadzoi Kazem
Department of Surgery, Boston University School of Medicine, Boston, MA, USA.
Department of Urology, VA Boston Healthcare System, Boston, MA, USA.
Res Rep Urol. 2020 Sep 17;12:391-402. doi: 10.2147/RRU.S271618. eCollection 2020.
The etiology of lower urinary tract symptoms in patients with non-obstructed non-neurogenic bladder remains largely unknown. Clinical studies divulged a significant correlation between reduced bladder blood flow and low bladder compliance. Animal models of bladder ischemia displayed structural modifications, characterized by loss of smooth muscle cells and accumulation of connective tissue in the bladder wall. The underlying mechanisms contributing to structural damage in bladder ischemia remain largely elusive. We previously reported that structural modifications in bladder ischemia correlate with upregulated stress proteins and cell survival signaling, suggesting the potential role of cellular stress in ischemic damage. However, stress response molecules and downstream pathways eliciting bladder damage in ischemia remain largely undetermined.
Using a rat model of bladder ischemia along with a cell culture hypoxia model, we investigated stress signaling molecules in the ischemic bladder tissues and hypoxic bladder smooth muscle cells.
Our data suggest simultaneous upregulation of two major cellular stress-sensing molecules, namely apoptosis signal-regulating kinase 1 (ASK1) and caspase-3, implying degenerative insult via stress signaling pathway in bladder ischemia. Consistent with bladder ischemia, incubation of cultured human bladder smooth muscle cells at low oxygen tension increased both ASK1 and caspase-3 expression, insinuating hypoxia as an essential factor in ASK1 and caspase-3 upregulation. Gene deletion of ASK1 by ASK1 siRNA in cultured smooth muscle cells prevented caspase-3 upregulation by hypoxia, suggesting caspase-3 regulation by ASK1 under the ischemic/hypoxic conditions. Upregulation of ASK1 and caspase-3 in rat bladder ischemia and human bladder smooth muscle cell hypoxia was associated with subcellular structural modifications consistent with the initial stages of apoptotic insult.
Our data suggest that stress sensing by ASK1 and caspase-3 may contribute to subcellular structural damage and low bladder compliance. The ASK1/caspase-3 pathway may provide therapeutic targets against cellular stress and degenerative responses in bladder ischemia.
非梗阻性非神经源性膀胱患者下尿路症状的病因在很大程度上仍不清楚。临床研究揭示了膀胱血流减少与膀胱顺应性降低之间存在显著相关性。膀胱缺血的动物模型显示出结构改变,其特征是膀胱壁平滑肌细胞丢失和结缔组织积聚。导致膀胱缺血结构损伤的潜在机制在很大程度上仍不清楚。我们之前报道过,膀胱缺血中的结构改变与应激蛋白上调和细胞存活信号相关,提示细胞应激在缺血性损伤中的潜在作用。然而,在缺血中引发膀胱损伤的应激反应分子和下游通路在很大程度上仍未确定。
我们使用大鼠膀胱缺血模型以及细胞培养缺氧模型,研究了缺血膀胱组织和缺氧膀胱平滑肌细胞中的应激信号分子。
我们的数据表明,两种主要的细胞应激感知分子即凋亡信号调节激酶1(ASK1)和半胱天冬酶-3同时上调,这意味着在膀胱缺血中通过应激信号通路发生了退行性损伤。与膀胱缺血一致,在低氧张力下培养人膀胱平滑肌细胞会增加ASK1和半胱天冬酶-3的表达,表明缺氧是ASK1和半胱天冬酶-3上调的一个重要因素。在培养的平滑肌细胞中通过ASK1 siRNA对ASK1进行基因缺失可防止缺氧导致的半胱天冬酶-3上调,这表明在缺血/缺氧条件下ASK1对半胱天冬酶-3有调节作用。大鼠膀胱缺血和人膀胱平滑肌细胞缺氧中ASK1和半胱天冬酶-3的上调与亚细胞结构改变有关,这些改变与凋亡损伤的初始阶段一致。
我们的数据表明,ASK1和半胱天冬酶-3的应激感知可能导致亚细胞结构损伤和膀胱顺应性降低。ASK1/半胱天冬酶-3通路可能为针对膀胱缺血中的细胞应激和退行性反应提供治疗靶点。