Suppr超能文献

机械应变三维微组织中的时间依赖性应力松弛与恢复

Time dependent stress relaxation and recovery in mechanically strained 3D microtissues.

作者信息

Walker Matthew, Godin Michel, Harden James L, Pelling Andrew E

机构信息

Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, Ontario K1N5N5, Canada.

出版信息

APL Bioeng. 2020 Sep 11;4(3):036107. doi: 10.1063/5.0002898. eCollection 2020 Sep.

Abstract

Characterizing the time-dependent mechanical properties of cells is not only necessary to determine how they deform but also to understand how external forces trigger biochemical-signaling cascades to govern their behavior. At present, mechanical properties are largely assessed by applying local shear or compressive forces on single cells grown in isolation on non-physiological 2D surfaces. In comparison, we developed the microfabricated vacuum actuated stretcher to measure tensile loading of 3D multicellular "microtissue" cultures. Using this approach, we here assessed the time-dependent stress relaxation and recovery responses of microtissues and quantified the spatial viscoelastic deformation following step length changes. Unlike previous results, stress relaxation and recovery in microtissues measured over a range of step amplitudes and pharmacological treatments followed an augmented stretched exponential behavior describing a broad distribution of inter-related timescales. Furthermore, despite the variety of experimental conditions, all responses led to a single linear relationship between the residual elastic stress and the degree of stress relaxation, suggesting that these mechanical properties are coupled through interactions between structural elements and the association of cells with their matrix. Finally, although stress relaxation could be quantitatively and spatially linked to recovery, they differed greatly in their dynamics; while stress recovery acted as a linear process, relaxation time constants changed with an inverse power law with the step size. This assessment of microtissues offers insights into how the collective behavior of cells in a 3D collagen matrix generates the dynamic mechanical properties of tissues, which is necessary to understand how cells deform and sense mechanical forces .

摘要

表征细胞随时间变化的力学特性不仅对于确定它们如何变形是必要的,而且对于理解外力如何触发生化信号级联反应以控制其行为也是必要的。目前,力学特性主要通过对在非生理二维表面上单独生长的单细胞施加局部剪切力或压缩力来评估。相比之下,我们开发了微制造真空驱动拉伸器来测量三维多细胞“微组织”培养物的拉伸载荷。使用这种方法,我们在此评估了微组织随时间变化的应力松弛和恢复响应,并量化了步长变化后的空间粘弹性变形。与先前的结果不同,在一系列步幅和药物处理下测量的微组织中的应力松弛和恢复遵循增强的拉伸指数行为,描述了广泛分布的相互关联的时间尺度。此外,尽管实验条件多种多样,但所有响应都导致残余弹性应力与应力松弛程度之间存在单一的线性关系,这表明这些力学特性是通过结构元件之间的相互作用以及细胞与其基质的关联而耦合的。最后,虽然应力松弛在数量和空间上可以与恢复相关联,但它们在动力学上有很大差异;应力恢复表现为线性过程,而松弛时间常数随步长呈反幂律变化。对微组织的这种评估为深入了解三维胶原基质中细胞的集体行为如何产生组织的动态力学特性提供了见解,这对于理解细胞如何变形和感知机械力是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验