Suppr超能文献

统一疾病生态学中的空间和社交网络分析。

Unifying spatial and social network analysis in disease ecology.

机构信息

Department of Biology, Georgetown University, Washington, DC, USA.

EVECO, Institute of Biology, Universiteit Antwerpen, Antwerp, Belgium.

出版信息

J Anim Ecol. 2021 Jan;90(1):45-61. doi: 10.1111/1365-2656.13356. Epub 2020 Oct 16.

Abstract

Social network analysis has achieved remarkable popularity in disease ecology, and is sometimes carried out without investigating spatial heterogeneity. Many investigations into sociality and disease may nevertheless be subject to cryptic spatial variation, so ignoring spatial processes can limit inference regarding disease dynamics. Disease analyses can gain breadth, power and reliability from incorporating both spatial and social behavioural data. However, the tools for collecting and analysing these data simultaneously can be complex and unintuitive, and it is often unclear when spatial variation must be accounted for. These difficulties contribute to the scarcity of simultaneous spatial-social network analyses in disease ecology thus far. Here, we detail scenarios in disease ecology that benefit from spatial-social analysis. We describe procedures for simultaneous collection of both spatial and social data, and we outline statistical approaches that can control for and estimate spatial-social covariance in disease ecology analyses. We hope disease researchers will expand social network analyses to more often include spatial components and questions. These measures will increase the scope of such analyses, allowing more accurate model estimates, better inference of transmission modes, susceptibility effects and contact scaling patterns, and ultimately more effective disease interventions.

摘要

社会网络分析在疾病生态学中已经取得了显著的进展,但有时在研究中并未考虑空间异质性。然而,许多关于社会性和疾病的研究可能受到隐蔽的空间变异的影响,因此忽略空间过程可能会限制对疾病动态的推断。将空间和社会行为数据结合起来,可以使疾病分析获得更广泛的视角、更强的能力和更高的可靠性。然而,同时收集和分析这些数据的工具可能很复杂且难以理解,而且通常不清楚何时必须考虑空间变化。这些困难导致迄今为止疾病生态学中同时进行空间-社会网络分析的情况很少。在这里,我们详细介绍了在疾病生态学中受益于空间-社会分析的场景。我们描述了同时收集空间和社会数据的程序,并概述了可用于控制和估计疾病生态学分析中空间-社会协方差的统计方法。我们希望疾病研究人员将社会网络分析扩展到更频繁地包含空间成分和问题。这些措施将扩大此类分析的范围,使模型估计更加准确,更好地推断传播模式、易感性影响和接触规模模式,最终实现更有效的疾病干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验