Division of Field Studies and Engineering , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA.
Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA.
Int J Biostat. 2020 Sep 28;17(2):267-282. doi: 10.1515/ijb-2020-0010.
When observations are correlated, modeling the within-subject correlation structure using quantile regression for longitudinal data can be difficult unless a working independence structure is utilized. Although this approach ensures consistent estimators of the regression coefficients, it may result in less efficient regression parameter estimation when data are highly correlated. Therefore, several marginal quantile regression methods have been proposed to improve parameter estimation. In a longitudinal study some of the covariates may change their values over time, and the topic of time-dependent covariate has not been explored in the marginal quantile literature. As a result, we propose an approach for marginal quantile regression in the presence of time-dependent covariates, which includes a strategy to select a working type of time-dependency. In this manuscript, we demonstrate that our proposed method has the potential to improve power relative to the independence estimating equations approach due to the reduction of mean squared error.
当观察结果相关时,使用分位数回归对纵向数据进行个体内相关性建模可能很困难,除非使用有效的独立结构。虽然这种方法可以确保回归系数的一致估计量,但当数据高度相关时,它可能会导致回归参数估计效率降低。因此,已经提出了几种边际分位数回归方法来改善参数估计。在纵向研究中,一些协变量的值可能随时间而变化,而边际分位数文献中尚未探讨时变协变量的主题。因此,我们提出了一种在存在时变协变量的情况下进行边际分位数回归的方法,其中包括选择工作类型的时变策略。在本文中,我们证明了由于均方误差的减少,我们提出的方法有可能相对于独立估计方程方法提高功效。