Suppr超能文献

存在时变协变量时纵向数据分析的边缘分位数回归。

Marginal quantile regression for longitudinal data analysis in the presence of time-dependent covariates.

机构信息

Division of Field Studies and Engineering , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA.

Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA.

出版信息

Int J Biostat. 2020 Sep 28;17(2):267-282. doi: 10.1515/ijb-2020-0010.

Abstract

When observations are correlated, modeling the within-subject correlation structure using quantile regression for longitudinal data can be difficult unless a working independence structure is utilized. Although this approach ensures consistent estimators of the regression coefficients, it may result in less efficient regression parameter estimation when data are highly correlated. Therefore, several marginal quantile regression methods have been proposed to improve parameter estimation. In a longitudinal study some of the covariates may change their values over time, and the topic of time-dependent covariate has not been explored in the marginal quantile literature. As a result, we propose an approach for marginal quantile regression in the presence of time-dependent covariates, which includes a strategy to select a working type of time-dependency. In this manuscript, we demonstrate that our proposed method has the potential to improve power relative to the independence estimating equations approach due to the reduction of mean squared error.

摘要

当观察结果相关时,使用分位数回归对纵向数据进行个体内相关性建模可能很困难,除非使用有效的独立结构。虽然这种方法可以确保回归系数的一致估计量,但当数据高度相关时,它可能会导致回归参数估计效率降低。因此,已经提出了几种边际分位数回归方法来改善参数估计。在纵向研究中,一些协变量的值可能随时间而变化,而边际分位数文献中尚未探讨时变协变量的主题。因此,我们提出了一种在存在时变协变量的情况下进行边际分位数回归的方法,其中包括选择工作类型的时变策略。在本文中,我们证明了由于均方误差的减少,我们提出的方法有可能相对于独立估计方程方法提高功效。

相似文献

1
2
A novel approach to selecting classification types for time-dependent covariates in the marginal analysis of longitudinal data.
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3176-3186. doi: 10.1177/0962280218799529. Epub 2018 Sep 11.
3
Improved methods for the marginal analysis of longitudinal data in the presence of time-dependent covariates.
Stat Med. 2017 Jul 20;36(16):2533-2546. doi: 10.1002/sim.7307. Epub 2017 Apr 24.
5
A General Framework for Quantile Estimation with Incomplete Data.
J R Stat Soc Series B Stat Methodol. 2019 Apr;81(2):305-333. doi: 10.1111/rssb.12309. Epub 2019 Jan 6.
6
Efficient quantile marginal regression for longitudinal data with dropouts.
Biostatistics. 2016 Jul;17(3):561-75. doi: 10.1093/biostatistics/kxw007. Epub 2016 Mar 7.
7
Composite marginal quantile regression analysis for longitudinal adolescent body mass index data.
Stat Med. 2017 Sep 20;36(21):3380-3397. doi: 10.1002/sim.7355. Epub 2017 Jun 2.
8
Marginal quantile regression for dependent data with a working odds-ratio matrix.
Biostatistics. 2018 Oct 1;19(4):529-545. doi: 10.1093/biostatistics/kxx052.
9
Globally Adaptive Longitudinal Quantile Regression with High Dimensional Compositional Covariates.
Stat Sin. 2023 May;33(Spec Issue):1295-1318. doi: 10.5705/ss.202021.0006.
10
Regression analysis of longitudinal binary data with time-dependent environmental covariates: bias and efficiency.
Biostatistics. 2005 Oct;6(4):633-52. doi: 10.1093/biostatistics/kxi033. Epub 2005 May 25.

引用本文的文献

2
Quantile regression for exposure data with repeated measures in the presence of non-detects.
J Expo Sci Environ Epidemiol. 2021 Nov;31(6):1057-1066. doi: 10.1038/s41370-021-00345-1. Epub 2021 Jun 9.

本文引用的文献

1
A novel approach to selecting classification types for time-dependent covariates in the marginal analysis of longitudinal data.
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3176-3186. doi: 10.1177/0962280218799529. Epub 2018 Sep 11.
2
Composite marginal quantile regression analysis for longitudinal adolescent body mass index data.
Stat Med. 2017 Sep 20;36(21):3380-3397. doi: 10.1002/sim.7355. Epub 2017 Jun 2.
3
Improved methods for the marginal analysis of longitudinal data in the presence of time-dependent covariates.
Stat Med. 2017 Jul 20;36(16):2533-2546. doi: 10.1002/sim.7307. Epub 2017 Apr 24.
4
GMM logistic regression models for longitudinal data with time-dependent covariates and extended classifications.
Stat Med. 2014 Nov 30;33(27):4756-69. doi: 10.1002/sim.6273. Epub 2014 Aug 8.
5
Using modified approaches on marginal regression analysis of longitudinal data with time-dependent covariates.
Stat Med. 2014 Aug 30;33(19):3354-64. doi: 10.1002/sim.6171. Epub 2014 Apr 9.
9
Variance Estimation in Censored Quantile Regression via Induced Smoothing.
Comput Stat Data Anal. 2012 Apr 1;56(4):785-796. doi: 10.1016/j.csda.2010.10.018. Epub 2010 Apr 21.
10
Quantile regression models with multivariate failure time data.
Biometrics. 2005 Mar;61(1):151-61. doi: 10.1111/j.0006-341X.2005.030815.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验