Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, U.S.A.
Stat Med. 2014 Jun 15;33(13):2222-37. doi: 10.1002/sim.6106. Epub 2014 Feb 6.
Generalized estimating equations are commonly used to analyze correlated data. Choosing an appropriate working correlation structure for the data is important, as the efficiency of generalized estimating equations depends on how closely this structure approximates the true structure. Therefore, most studies have proposed multiple criteria to select the working correlation structure, although some of these criteria have neither been compared nor extensively studied. To ease the correlation selection process, we propose a criterion that utilizes the trace of the empirical covariance matrix. Furthermore, use of the unstructured working correlation can potentially improve estimation precision and therefore should be considered when data arise from a balanced longitudinal study. However, most previous studies have not allowed the unstructured working correlation to be selected as it estimates more nuisance correlation parameters than other structures such as AR-1 or exchangeable. Therefore, we propose appropriate penalties for the selection criteria that can be imposed upon the unstructured working correlation. Via simulation in multiple scenarios and in application to a longitudinal study, we show that the trace of the empirical covariance matrix works very well relative to existing criteria. We further show that allowing criteria to select the unstructured working correlation when utilizing the penalties can substantially improve parameter estimation.
广义估计方程常用于分析相关数据。选择适合数据的工作相关结构非常重要,因为广义估计方程的效率取决于该结构与真实结构的接近程度。因此,大多数研究提出了多种选择工作相关结构的标准,尽管其中一些标准尚未进行比较或广泛研究。为了简化相关选择过程,我们提出了一种利用经验协方差矩阵迹的标准。此外,当数据来自平衡纵向研究时,使用非结构化工作相关结构可以潜在地提高估计精度,因此应该考虑使用它。然而,大多数先前的研究都不允许选择非结构化工作相关结构,因为它估计的多余干扰相关参数比 AR-1 或可交换结构等其他结构多。因此,我们针对非结构化工作相关结构提出了适当的选择标准惩罚。通过在多个场景中的模拟和对一个纵向研究的应用,我们表明经验协方差矩阵的迹相对于现有标准表现非常出色。我们进一步表明,在利用惩罚允许标准选择非结构化工作相关结构时,可以大大改善参数估计。