Suppr超能文献

不良住院药物事件模型(AIME)的开发与验证。

Development and validation of the Adverse Inpatient Medication Event model (AIME).

机构信息

School of Pharmacy, The University of Queensland, Brisbane, Australia.

Princess Alexandra Hospital, Metro South Health, Brisbane, Australia.

出版信息

Br J Clin Pharmacol. 2021 Mar;87(3):1512-1524. doi: 10.1111/bcp.14560. Epub 2020 Nov 5.

Abstract

AIMS

Medication harm has negative clinical and economic consequences, contributing to hospitalisation, morbidity and mortality. The incidence ranges from 4 to 14%, of which up to 50% of events may be preventable. A predictive model for identifying high-risk inpatients can guide a timely and systematic approach to prioritisation. The aim of this study is to develop and internally validate a risk prediction model for prioritisation of hospitalised patients at risk of medication harm.

METHODS

A retrospective cohort study was conducted in general medical and geriatric specialties at an Australian hospital over six months. Medication harm was identified using International Classification of Disease (ICD-10) codes and the hospital's incident database. Sixty-eight variables, including medications and laboratory results, were extracted from the hospital's databases. Multivariable logistic regression was used to develop the final risk model. Performance was evaluated using area under the receiver operative characteristic curve (AuROC) and clinical utility was determined using decision curve analysis.

RESULTS

The study cohort included 1982 patients with median age 74 years, of which 136 (7%) experienced at least one adverse medication event(s). The model included: length of stay, hospital re-admission within 12 months, venous or arterial thrombosis and/or embolism, ≥ 8 medications, serum sodium < 126 mmol/L, INR > 3, anti-psychotic, antiarrhythmic and immunosuppressant medications, and history of medication allergy. Validation gave an AuROC of 0.70 (95% CI: 0.65-0.74). Decision curve analysis identified that the AIME may be clinically useful to help guide decision making in practice.

CONCLUSION

We have developed a predictive model with reasonable performance. Future steps include external validation and impact evaluation.

摘要

目的

药物不良反应会带来负面的临床和经济后果,导致住院、发病和死亡。其发生率在 4%至 14%之间,其中多达 50%的事件可能是可以预防的。预测模型可识别高风险住院患者,指导及时、系统的优先排序方法。本研究旨在开发并内部验证一种用于识别有药物不良反应风险的住院患者的风险预测模型,以进行优先排序。

方法

本回顾性队列研究在澳大利亚一家医院的普通内科和老年科进行了六个月。药物不良反应通过国际疾病分类(ICD-10)代码和医院的事件数据库进行识别。从医院数据库中提取了 68 个变量,包括药物和实验室结果。多变量逻辑回归用于开发最终风险模型。使用受试者工作特征曲线下面积(AuROC)评估性能,并使用决策曲线分析确定临床实用性。

结果

研究队列包括 1982 名患者,中位年龄为 74 岁,其中 136 名(7%)至少发生了一次不良药物事件。该模型包括:住院时间、12 个月内再次住院、静脉或动脉血栓形成和/或栓塞、≥8 种药物、血清钠<126mmol/L、INR>3、抗精神病药、抗心律失常药和免疫抑制剂以及药物过敏史。验证的 AuROC 为 0.70(95%CI:0.65-0.74)。决策曲线分析表明,AIME 可能具有临床实用性,有助于指导实践中的决策。

结论

我们开发了一种性能合理的预测模型。下一步包括外部验证和影响评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验