Suppr超能文献

将传导视为一种柔韧的电响应:缝隙连接和离子通道的影响。

Conceptualizing conduction as a pliant electrical response: impact of gap junctions and ion channels.

机构信息

Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.

Robarts Research Institute and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.

出版信息

Am J Physiol Heart Circ Physiol. 2020 Dec 1;319(6):H1276-H1289. doi: 10.1152/ajpheart.00285.2020. Epub 2020 Sep 28.

Abstract

Vasomotor responses conduct among resistance arteries to coordinate blood flow delivery pursuant to energetic demand. Conduction is set by the electrical and mechanical properties of vascular cells, the former tied to how gap junctions and ion channels distribute and dissipate charge, respectively. These membrane proteins are subject to modulation; thus, conduction could be viewed as "pliant" to the current regulatory state. This study used in silico approaches to conceptualize electrical pliancy and to illustrate how gap junctional and ion channel properties distinctly impact conduction along a single skeletal muscle artery or a branching cerebrovascular network. Initial simulations revealed how vascular cells encoded with electrotonic properties best reproduced spreading behavior; the endothelium's importance as a charge source and a longitudinal conduit was readily observed. Alterations in gap junctional conductance produced unique electrical fingerprints: ) decreased endothelial coupling impaired longitudinal but enhanced radial spread, and ) reduced myoendothelial coupling limited radial but enhanced longitudinal spread. Subsequent simulations illustrated how tuning ion channel activity, e.g., inward rectifying- and voltage-gated K channels, modified charge dissipation, resting membrane potential, and the spread of the electrical phenomenon. Restricting ion channel tuning to a network subregion then revealed how electrical spread could be locally shaped in accordance with the aggregate changes in membrane resistance. In summary, our analysis frames and reimagines electrical conduction as a pliable process, with subtle regulatory changes to membrane proteins shaping network spread and tissue perfusion. Conducted vasomotor responses depend on initiation and spread of electrical phenomena along arterial walls and their translation into contractile responses. Using computational approaches, we show how subtle but widespread regulation of gap junctions and ion channels can modulate the range and amplitude of electrical spread. Ion channels are regulated by endocrine and mechanical signals and may differ regionally in networks. Subregional electrical changes are not spatially confined but may affect electrical conduction in neighboring regions.

摘要

血管平滑肌对阻力血管的舒缩反应进行调节,以根据能量需求分配和调节血流输送。这种调节是通过血管细胞的电学和力学特性来实现的,前者与缝隙连接和离子通道分别如何分配和耗散电荷有关。这些膜蛋白可被调节;因此,调节可以被视为对当前调节状态的“顺应”。本研究使用计算机模拟方法来概念化电学顺应性,并说明缝隙连接和离子通道特性如何分别影响单个骨骼肌血管或分支脑血管网络中的电传导。初步模拟结果表明,具有电紧张特性的血管细胞如何最佳地再现传播行为;内皮细胞作为电荷源和纵向导管的重要性很容易观察到。缝隙连接电导的改变产生了独特的电指纹:(1)减少内皮细胞偶联会损害纵向传播,但增强横向传播;(2)减少肌内皮细胞偶联会限制横向传播,但增强纵向传播。随后的模拟表明,如何调节离子通道活性,例如内向整流型和电压门控 K 通道,可改变电荷耗散、静息膜电位以及电现象的传播。然后限制离子通道的调节到网络的一个子区域,就可以根据膜电阻的总体变化来局部塑造电传播。总之,我们的分析框架将电传导重新构想为一个灵活的过程,膜蛋白的细微调节变化可以塑造网络的传播和组织灌注。血管舒缩反应依赖于沿动脉壁传播的电现象的启动和传播及其转化为收缩反应。通过计算方法,我们展示了缝隙连接和离子通道的细微但广泛的调节如何可以调节电传播的范围和幅度。离子通道受内分泌和机械信号的调节,并且在网络中可能存在区域性差异。局部的电变化不会局限在空间上,但可能会影响相邻区域的电传导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验