Suppr超能文献

基于空间-光谱信息的双通道 CNN 对高光谱图像进行分类。

Using dual-channel CNN to classify hyperspectral image based on spatial-spectral information.

机构信息

School of Electronics and Information Engineering (School of Big Data Science), Taizhou University, Taizhou, China.

The Transportation Monitoring and Emergency Response Center of Shandong Province, Jinan, China.

出版信息

Math Biosci Eng. 2020 May 2;17(4):3450-3477. doi: 10.3934/mbe.2020195.

Abstract

In the field of remote sensing image processing, the classification of hyperspectral image (HSI) is a hot topic. There are two main problems lead to the classification accuracy unsatisfactory. One problem is that the recent research on HSI classification is based on spectral features, the relationship between different pixels has been ignored; the other is that the HSI data does not contain or only contain a small amount of labeled data, so it is impossible to build a well classification model. To solve these problems, a dual-channel CNN model has been proposed to boost its discriminative capability for HSI classification. The proposed dual-channel CNN model has several distinct advantages. Firstly, the model consists of spectral feature extraction channel and spatial feature extraction channel; the 1-D CNN and 3-D CNN are used to extract the spectral and spatial features, respectively. Secondly, the dual-channel CNN have been used for fusing the spatial-spectral features, the fusion feature is input into the classifier, which effectively improves the classification accuracy. Finally, due to considering the spatial and spectral features, the model can effectively solve the problem of lack of training samples. The experiments on benchmark data sets have demonstrated that the proposed dual-channel CNN model considerably outperforms other state-of-the-art method.

摘要

在遥感图像处理领域,高光谱图像(HSI)分类是一个热点。导致分类精度不令人满意的主要有两个问题。一个问题是,最近的 HSI 分类研究基于光谱特征,忽略了不同像素之间的关系;另一个是 HSI 数据不包含或仅包含少量标记数据,因此无法构建良好的分类模型。为了解决这些问题,提出了一种双通道 CNN 模型,以提高其对 HSI 分类的判别能力。所提出的双通道 CNN 模型具有几个明显的优点。首先,该模型由光谱特征提取通道和空间特征提取通道组成;使用 1-D CNN 和 3-D CNN 分别提取光谱和空间特征。其次,双通道 CNN 用于融合空间-光谱特征,融合特征输入分类器,有效提高了分类精度。最后,由于考虑了空间和光谱特征,该模型可以有效地解决训练样本不足的问题。在基准数据集上的实验表明,所提出的双通道 CNN 模型明显优于其他最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验