Suppr超能文献

基于注意力密集型 3D-2D-CNN 的高光谱图像分类的空谱特征细化。

Spatial-Spectral Feature Refinement for Hyperspectral Image Classification Based on Attention-Dense 3D-2D-CNN.

机构信息

School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China.

出版信息

Sensors (Basel). 2020 Sep 11;20(18):5191. doi: 10.3390/s20185191.

Abstract

Convolutional neural networks provide an ideal solution for hyperspectral image (HSI) classification. However, the classification effect is not satisfactory when limited training samples are available. Focused on "small sample" hyperspectral classification, we proposed a novel 3D-2D-convolutional neural network (CNN) model named AD-HybridSN (Attention-Dense-HybridSN). In our proposed model, a dense block was used to reuse shallow features and aimed at better exploiting hierarchical spatial-spectral features. Subsequent depth separable convolutional layers were used to discriminate the spatial information. Further refinement of spatial-spectral features was realized by the channel attention method and spatial attention method, which were performed behind every 3D convolutional layer and every 2D convolutional layer, respectively. Experiment results indicate that our proposed model can learn more discriminative spatial-spectral features using very few training data. In Indian Pines, Salinas and the University of Pavia, AD-HybridSN obtain 97.02%, 99.59% and 98.32% overall accuracy using only 5%, 1% and 1% labeled data for training, respectively, which are far better than all the contrast models.

摘要

卷积神经网络为高光谱图像(HSI)分类提供了理想的解决方案。然而,当可用的训练样本有限时,分类效果并不理想。针对“小样本”高光谱分类问题,我们提出了一种名为 AD-HybridSN(注意力-密集-混合 SN)的新型 3D-2D 卷积神经网络(CNN)模型。在我们提出的模型中,密集块用于重用浅层特征,旨在更好地利用分层空间-光谱特征。随后使用深度可分离卷积层来区分空间信息。通过通道注意力方法和空间注意力方法进一步细化空间-光谱特征,分别在每个 3D 卷积层和每个 2D 卷积层后面执行。实验结果表明,我们提出的模型可以使用非常少的训练数据学习更具判别力的空间-光谱特征。在印第安纳松树、萨利纳斯和帕维亚大学数据集上,AD-HybridSN 仅使用 5%、1%和 1%的标记数据进行训练,分别获得了 97.02%、99.59%和 98.32%的整体准确率,远远优于所有对比模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41f9/7570518/02297a6f9531/sensors-20-05191-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验