Suppr超能文献

基于卷积神经网络算法的农业高光谱图像分类比较

Comparison of CNN Algorithms on Hyperspectral Image Classification in Agricultural Lands.

机构信息

Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan.

出版信息

Sensors (Basel). 2020 Mar 20;20(6):1734. doi: 10.3390/s20061734.

Abstract

Several versions of convolutional neural network (CNN) were developed to classify hyperspectral images (HSIs) of agricultural lands, including 1D-CNN with pixelwise spectral data, 1D-CNN with selected bands, 1D-CNN with spectral-spatial features and 2D-CNN with principal components. The HSI data of a crop agriculture in Salinas Valley and a mixed vegetation agriculture in Indian Pines were used to compare the performance of these CNN algorithms. The highest overall accuracy on these two cases are 99.8% and 98.1%, respectively, achieved by applying 1D-CNN with augmented input vectors, which contain both spectral and spatial features embedded in the HSI data.

摘要

已经开发出了几种卷积神经网络 (CNN) 版本来对农业用地的高光谱图像 (HSI) 进行分类,包括对逐个像素的光谱数据进行分类的 1D-CNN、对选择的波段进行分类的 1D-CNN、对光谱-空间特征进行分类的 1D-CNN 和对主成分进行分类的 2D-CNN。使用萨利纳斯谷的作物农业和印第安松的混合植被农业的 HSI 数据来比较这些 CNN 算法的性能。在这两种情况下,应用包含 HSI 数据中嵌入的光谱和空间特征的扩充输入向量的 1D-CNN 分别实现了 99.8%和 98.1%的最高总体精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e37/7146316/4f91cdaf1170/sensors-20-01734-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验