Department of Mechanical, Computer and Aerospace Engineering, Universidad de León, 24071 León, Spain.
Sensors (Basel). 2020 Sep 24;20(19):5475. doi: 10.3390/s20195475.
Local Positioning Systems (LPS) have shown excellent performance for applications that demand high accuracy. They rely on ad-hoc node deployments which fit the environment characteristics in order to reduce the system uncertainties. The obtainment of competitive results through these systems requires the solution of the Node Location Problem (finding the optimal cartesian coordinates of the architecture sensors). This problem has been assigned as NP-Hard, therefore a heuristic solution is recommended for addressing this complex problem. Genetic Algorithms (GA) have shown an excellent trade-off between diversification and intensification in the literature. However, in Non-Line-of-Sight (NLOS) environments in which there is not continuity in the fitness function evaluation of a particular node distribution among contiguous solutions, challenges arise for the GA during the exploration of new potential regions of the space of solutions. Consequently, in this paper, we first propose a Hybrid GA with a combination of the GA operators in the evolutionary process for the Node Location Problem. Later, we introduce a Memetic Algorithm (MA) with a Local Search (LS) strategy for exploring the most different individuals of the population in search of improving the previous results. Finally, we combine the Hybrid Genetic Algorithm (HGA) and Memetic Algorithm (MA), designing an enhanced novel methodology for solving the Node Location Problem, a Hybrid Memetic Algorithm (HMA). Results show that the HMA proposed in this article outperforms all of the individual configurations presented and attains an improvement of 14.2% in accuracy for the Node Location Problem solution in the scenario of simulations with regards to the previous GA optimizations of the literature.
本地定位系统 (LPS) 在需要高精度的应用中表现出色。它们依赖于特定于节点的部署,这些部署适合环境特征,以降低系统不确定性。通过这些系统获得有竞争力的结果需要解决节点定位问题(找到架构传感器的最佳笛卡尔坐标)。该问题已被指定为 NP 难,因此建议使用启发式解决方案来解决这个复杂问题。遗传算法 (GA) 在文献中表现出在多样性和强化之间的出色权衡。然而,在非视距 (NLOS) 环境中,由于特定节点分布的适应度函数评估在连续解决方案之间没有连续性,因此 GA 在探索解决方案空间的新潜在区域时会遇到挑战。因此,在本文中,我们首先提出了一种混合遗传算法,该算法在节点定位问题的进化过程中结合了 GA 算子。之后,我们引入了一种具有局部搜索 (LS) 策略的 Memetic 算法 (MA),用于探索种群中最不同的个体,以寻找改进先前结果的方法。最后,我们将混合遗传算法 (HGA) 和 Memetic 算法 (MA) 结合起来,设计了一种用于解决节点定位问题的增强型新方法,即混合 Memetic 算法 (HMA)。结果表明,本文提出的 HMA 在模拟场景中相对于文献中以前的 GA 优化,在节点定位问题的解决方案的准确性方面提高了 14.2%,优于所有单独的配置。