文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

钆塞酸增强 MRI 预测肝细胞癌微血管侵犯的观察者间变异性和诊断性能。

Interobserver Variability and Diagnostic Performance of Gadoxetic Acid-enhanced MRI for Predicting Microvascular Invasion in Hepatocellular Carcinoma.

机构信息

From the Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro Gangnam-gu, Seoul 06351, Republic of Korea (J.H.M., M.W.L., D.I.C.); Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (M.W.L.); Department of Radiology, Konkuk University School of Medicine, Seoul, Republic of Korea (H.S.P.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (D.H.L.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea (H.J.P.); Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea (S.L.); Department of Radiology, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon, Republic of Korea (S.Y.C., J.E.L.); Department of Radiology, Chungbuk National University Hospital, Cheongju, Republic of Korea (J.L.); Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (S.Y.H.); Department of Mathematical and Statistical Sciences University of Alberta, Edmonton, Canada (K.C.C.); Biostatics and Clinical Epidemiology Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea (J.H.A.).

出版信息

Radiology. 2020 Dec;297(3):573-581. doi: 10.1148/radiol.2020201940. Epub 2020 Sep 29.


DOI:10.1148/radiol.2020201940
PMID:32990512
Abstract

Background Accurate identification of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) before treatment is critical for selecting a proper treatment strategy. Purpose To evaluate the interobserver agreement and the diagnostic performance of the MRI assessment of MVI in HCC according to the level of radiologist experience. Materials and Methods This retrospective study included 100 patients with surgically confirmed HCCs smaller than 5 cm who underwent gadoxetic acid-enhanced MRI between 2013 and 2016. Eight postfellowship radiologists (four with 7-13 years of experience [more experienced] and four with 3-6 years of experience [less experienced]) evaluated four imaging features (nonsmooth tumor margin, irregular rim-like enhancement in the arterial phase, peritumoral arterial phase hyperenhancement, peritumoral hepatobiliary phase hypointensity) and assigned the possibility of MVI. Interobserver agreement was determined by using Fleiss κ statistics according to reviewer experience and tumor size (≤3 cm vs >3 cm). With reference standards of histopathologic specimens, the diagnostic performance in the identification of MVI was assessed by using receiver operating characteristic curve analysis. Results In 100 patients (mean age, 58 years ± 10 [standard deviation]; 70 men) with 100 HCCs (mean size, 2.8 cm ± 0.9), 39 (39%) HCCs had MVI. The overall interobserver agreement was fair to moderate for the imaging features and their combinations (κ = 0.38-0.47) and MVI probability (κ = 0.41; 95% confidence interval: 0.33, 0.45). More experienced reviewers demonstrated higher agreement in MVI probability than less experienced reviewers (κ = 0.55 vs 0.36, respectively; = .002). Diagnostic performance of each reviewer was modest for MVI prediction (area under the receiver operating characteristic curve [AUC] range, 0.60-0.74). The AUCs for the diagnosis of MVI were lower for HCCs larger than 3 cm (range, 0.55-0.69) than for those less than or equal to 3 cm (range, 0.59-0.75). Conclusion Considerable interobserver variability exists in the assessment of microvascular invasion in hepatocellular carcinoma using MRI, even for more experienced radiologists. © RSNA, 2020 See also the editorial by Tang in this issue.

摘要

背景 在治疗前准确识别肝细胞癌(HCC)中的微血管侵犯(MVI)对于选择合适的治疗策略至关重要。目的 评估根据放射科医生经验水平,MRI 评估 HCC 中 MVI 的观察者间一致性和诊断性能。

材料与方法 本回顾性研究纳入了 2013 年至 2016 年间接受钆塞酸增强 MRI 检查且肿瘤直径小于 5cm、经手术证实为 HCC 的 100 例患者。8 名完成住院医师培训后的放射科医生(4 名经验 7-13 年[经验更丰富],4 名经验 3-6 年[经验较少])评估了 4 种影像学特征(肿瘤边缘不光滑、动脉期不规则边缘样强化、肿瘤周围动脉期强化、肿瘤周围肝胆期低信号)并对 MVI 的可能性进行了评估。根据观察者经验和肿瘤大小(≤3cm 与>3cm),使用 Fleiss κ 统计量评估观察者间一致性。以病理组织学标本为参考标准,采用受试者工作特征曲线分析评估对 MVI 的诊断性能。

结果 在 100 例患者(平均年龄 58 岁±10[标准差];70 例男性)的 100 个 HCC 中,有 39 个(39%)HCC 存在 MVI。对于影像学特征及其组合(κ=0.38-0.47)和 MVI 概率(κ=0.41;95%置信区间:0.33,0.45),整体观察者间一致性为中等至良好。经验更丰富的观察者在 MVI 概率方面的一致性高于经验较少的观察者(κ=0.55 与 0.36,P<.002)。每位观察者对 MVI 的预测诊断性能均为中等(受试者工作特征曲线下面积范围,0.60-0.74)。对于直径大于 3cm(范围,0.55-0.69)的 HCC,MVI 诊断的 AUC 低于直径小于或等于 3cm(范围,0.59-0.75)的 HCC。

结论 即使对于经验更丰富的放射科医生,使用 MRI 评估 HCC 中的 MVI 也存在相当大的观察者间差异。

相似文献

[1]
Interobserver Variability and Diagnostic Performance of Gadoxetic Acid-enhanced MRI for Predicting Microvascular Invasion in Hepatocellular Carcinoma.

Radiology. 2020-9-29

[2]
Multiparametric assessment of microvascular invasion in hepatocellular carcinoma using gadoxetic acid-enhanced MRI.

Abdom Radiol (NY). 2024-5

[3]
Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma.

J Hepatol. 2017-5-6

[4]
Nomogram for Predicting Microvascular Invasion in Hepatocellular Carcinoma Using Gadoxetic Acid-Enhanced MRI and Intravoxel Incoherent Motion Imaging.

Acad Radiol. 2024-2

[5]
LI-RADS Version 2018 Targetoid Appearances on Gadoxetic Acid-Enhanced MRI: Interobserver Agreement and Diagnostic Performance for the Differentiation of HCC and Non-HCC Malignancy.

AJR Am J Roentgenol. 2022-9

[6]
VICT2 Trait: Prognostic Alternative to Peritumoral Hepatobiliary Phase Hypointensity in HCC.

Radiology. 2023-4

[7]
Prediction of HCC microvascular invasion with gadobenate-enhanced MRI: correlation with pathology.

Eur Radiol. 2020-10

[8]
Prediction of microvascular invasion of hepatocellular carcinoma using gadoxetic acid-enhanced MR and (18)F-FDG PET/CT.

Abdom Imaging. 2015-4

[9]
Imaging features of small hepatocellular carcinomas with microvascular invasion on gadoxetic acid-enhanced MR imaging.

Eur J Radiol. 2011-12-3

[10]
Prediction of microvascular invasion of hepatocellular carcinoma: usefulness of peritumoral hypointensity seen on gadoxetate disodium-enhanced hepatobiliary phase images.

J Magn Reson Imaging. 2011-11-8

引用本文的文献

[1]
An easily machine learning-based tool for preliminary risk assessment of microvascular invasion in hepatocellular carcinoma.

Surg Endosc. 2025-8-27

[2]
3D fractal dimension analysis of CT imaging for microvascular invasion prediction in hepatocellular carcinoma.

Eur Radiol. 2025-8-7

[3]
Dual-layer spectral detector CT: a non-invasive tool for simultaneously predicting Ki-67 proliferation status and p53 mutations in pancreatic ductal adenocarcinoma.

Abdom Radiol (NY). 2025-7-14

[4]
Interpretable and generalizable deep learning model for preoperative assessment of microvascular invasion and outcome in hepatocellular carcinoma based on MRI: a multicenter study.

Insights Imaging. 2025-7-3

[5]
MRI Imaging Biomarkers for Prognostication of Hepatocellular Carcinoma.

J Korean Soc Radiol. 2025-5

[6]
Preoperative prediction of microvascular invasion and relapse-free survival in hepatocellular Carcinoma ≥3 cm using CT radiomics: Development and external validation.

BMC Med Imaging. 2025-5-1

[7]
The established chest MRI score for cystic fibrosis can be applied to contrast agent-free matrix pencil decomposition functional MRI: a multireader analysis.

Front Med (Lausanne). 2025-3-18

[8]
Prediction early recurrence of hepatocellular carcinoma after hepatectomy using gadoxetic acid-enhanced MRI and IVIM.

Eur J Radiol Open. 2025-3-15

[9]
Advances in multi-omics studies of microvascular invasion in hepatocellular carcinoma.

Eur J Med Res. 2025-3-13

[10]
MRI-Based Topology Deep Learning Model for Noninvasive Prediction of Microvascular Invasion and Assisting Prognostic Stratification in HCC.

Liver Int. 2025-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索