Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Department of Neurology, University of Lübeck, 23538 Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany.
Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
Neurobiol Dis. 2020 Dec;146:105119. doi: 10.1016/j.nbd.2020.105119. Epub 2020 Sep 28.
Abnormally sustained beta-frequency synchronisation between the motor cortex and subthalamic nucleus (STN) is associated with motor symptoms in Parkinson's disease (PD). It is currently unclear whether STN neurons have a preference for beta-frequency input (12-35 Hz), rather than cortical input at other frequencies, and how such a preference would arise following dopamine depletion. To address this question, we combined analysis of cortical and STN recordings from awake human PD patients undergoing deep brain stimulation surgery with recordings of identified STN neurons in anaesthetised rats. In these patients, we demonstrate that a subset of putative STN neurons is strongly and selectively sensitive to magnitude fluctuations of cortical beta oscillations over time, linearly increasing their phase-locking strength with respect to the full range of instantaneous amplitude in the beta-frequency range. In rats, we probed the frequency response of STN neurons in the cortico-basal-ganglia-network more precisely, by recording spikes evoked by short bursts of cortical stimulation with variable frequency (4-40 Hz) and constant amplitude. In both healthy and dopamine-depleted rats, only beta-frequency stimulation led to a progressive reduction in the variability of spike timing through the stimulation train. This suggests, that the interval of beta-frequency input provides an optimal window for eliciting the next spike with high fidelity. We hypothesize, that abnormal activation of the indirect pathway, via dopamine depletion and/or cortical stimulation, could trigger an underlying sensitivity of the STN microcircuit to beta-frequency input.
大脑皮层和丘脑底核(STN)之间异常持续的β频同步与帕金森病(PD)的运动症状有关。目前尚不清楚 STN 神经元是否对β频输入(12-35 Hz)具有偏好,而不是对其他频率的皮层输入,以及在多巴胺耗竭后这种偏好是如何产生的。为了解决这个问题,我们结合了在接受深部脑刺激手术的清醒 PD 患者的大脑皮层和 STN 记录的分析,以及在麻醉大鼠中记录的已识别的 STN 神经元的记录。在这些患者中,我们证明了一部分假定的 STN 神经元对皮质β振荡幅度随时间的波动具有强烈而选择性的敏感性,随着β频范围内的瞬时幅度的全范围线性增加,它们的相位锁定强度增加。在大鼠中,我们通过记录具有可变频率(4-40 Hz)和恒定幅度的皮质短爆发刺激引发的尖峰,更精确地探测了皮质-基底节网络中 STN 神经元的频率响应。在健康和多巴胺耗竭的大鼠中,只有β频刺激导致通过刺激序列的尖峰定时的可变性逐渐降低。这表明,β频输入的间隔提供了一个激发下一个尖峰的最佳窗口,具有高保真度。我们假设,间接通路的异常激活,通过多巴胺耗竭和/或皮质刺激,可能触发 STN 微电路对β频输入的潜在敏感性。