Suppr超能文献

基于深度学习的烟雾病诊断方法。

Deep Learning-Based Approach for the Diagnosis of Moyamoya Disease.

机构信息

Department of Neurosurgery, Sapporo Medical University, Japan.

Department of Neurosurgery, Sapporo Medical University, Japan.

出版信息

J Stroke Cerebrovasc Dis. 2020 Dec;29(12):105322. doi: 10.1016/j.jstrokecerebrovasdis.2020.105322. Epub 2020 Sep 25.

Abstract

OBJECTIVES

Moyamoya disease is a unique cerebrovascular disorder that is characterized by chronic bilateral stenosis of the internal carotid arteries and by the formation of an abnormal vascular network called moyamoya vessels. In this stury, the authors inspected whether differentiation between patients with moyamoya disease and those with atherosclerotic disease or normal controls might be possible by using deep machine learning technology.

MATERIALS AND METHODS

This study included 84 consecutive patients diagnosed with moyamoya disease at our hospital between April 2009 and July 2016. In each patient, two axial continuous slices of T2-weighed imaging at the level of the basal cistern, basal ganglia, and centrum semiovale were acquired. The image sets were processed by using code written in the programming language Python 3.7. Deep learning with fine tuning developed using VGG16 comprised several layers.

RESULTS

The accuracies of distinguishing between patients with moyamoya disease and those with atherosclerotic disease or controls in the basal cistern, basal ganglia, and centrum semiovale levels were 92.8, 84.8, and 87.8%, respectively.

CONCLUSION

The authors showed excellent results in terms of accuracy of differential diagnosis of moyamoya disease using AI with the conventional T2 weighted images. The authors suggest the possibility of diagnosing moyamoya disease using AI technique and demonstrate the area of interest on which AI focuses while processing magnetic resonance images.

摘要

目的

烟雾病是一种独特的脑血管疾病,其特征为颈内动脉慢性双侧狭窄和异常血管网(称为烟雾血管)的形成。在本研究中,作者使用深度学习技术来检验是否有可能通过该技术区分烟雾病患者、动脉粥样硬化性疾病患者和正常对照者。

材料与方法

本研究纳入了 2009 年 4 月至 2016 年 7 月在我院确诊的 84 例连续的烟雾病患者。每位患者均采集了鞍上池、基底节和半卵圆中心层面的 T2 加权成像的两个轴向连续切片。使用 Python 3.7 编程语言编写的代码对图像集进行处理。使用 VGG16 进行微调的深度学习包含多个层。

结果

在鞍上池、基底节和半卵圆中心水平区分烟雾病患者、动脉粥样硬化性疾病患者和对照者的准确率分别为 92.8%、84.8%和 87.8%。

结论

作者使用常规 T2 加权成像的人工智能在烟雾病的鉴别诊断方面取得了出色的准确率结果。作者提出了使用人工智能技术诊断烟雾病的可能性,并展示了人工智能在处理磁共振图像时关注的感兴趣区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验