Suppr超能文献

神经放射学中的人工智能新时代:当前研究与有前途的工具。

The new era of artificial intelligence in neuroradiology: current research and promising tools.

机构信息

Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.

Rede D'Or São Luiz, Departamento de Radiologia e Diagnóstico por Imagem, São Paulo SP, Brazil.

出版信息

Arq Neuropsiquiatr. 2024 Jun;82(6):1-12. doi: 10.1055/s-0044-1779486. Epub 2024 Apr 2.

Abstract

Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.

摘要

放射学有许多特点,使其成为人工智能(AI)早期应用的特别合适的医学学科。这些特点包括具有成熟的数字工作流程、用于图像存储的标准化协议以及许多明确定义的解释性活动。最近,美国食品和药物管理局(FDA)批准了 200 多种基于放射学的 AI 产品,用于协助放射科医生完成多项狭窄的图像分析任务,如图像增强、工作流程分诊和定量分析,这证实了这一观察结果。然而,为了利用 AI 提高疗效和效率,并克服这些产品广泛成功临床应用的重大障碍,放射科医生应该熟悉其特定专业领域的新兴应用。有鉴于此,本文综述了 AI 技术在神经放射学中的应用的现有文献,重点介绍了血管疾病、癫痫以及脱髓鞘和神经退行性疾病等疾病。我们还介绍了应用背后的一些算法,简要讨论了在神经放射学中使用 AI 模型进行推广的一些挑战,并略过了在临床实践中采用的最相关的商业上可用的解决方案。如果设计合理,AI 算法有可能彻底改善放射学,加强图像分析,提高定量成像技术的价值,并减轻诊断错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ba8/10987255/f3dc78a19a36/10-1055-s-0044-1779486-i230249-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验