Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700106, India.
Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700106, India.
Colloids Surf B Biointerfaces. 2020 Dec;196:111363. doi: 10.1016/j.colsurfb.2020.111363. Epub 2020 Sep 21.
The role of microscopic elasticity of nano-carriers in cellular uptake is an important aspect in biomedical research. Herein we have used AFM nano-indentation force spectroscopy and Förster resonance energy transfer (FRET) measurements to probe microelastic properties of three novel cationic liposomes based on di-alkyl dihydroxy ethyl ammonium chloride based lipids having asymmetry in their hydrophobic chains (Lip1818, Lip1814 and Lip1810). AFM data reveals that symmetry in hydrophobic chains of a cationic lipid (Lip1818) imparts higher rigidity to the resulting liposomes than those based on asymmetric lipids (Lip1814 and Lip1810). The stiffness of the cationic liposomes is found to decrease with increasing asymmetry in the hydrophobic lipid chains in the order of Lip1818 > Lip1814 > lip1810. FRET measurements between Coumarin 500 (Donor) and Merocyanine 540 (Acceptor) have revealed that full width at half-maxima (hw) of the probability distribution (P(r)) of donor-acceptor distance (r), increases in an order Lip1818 < Lip1814 < Lip1810 with increasing asymmetry of the hydrophobic lipid chains. This increase in width (hw) of the donor-acceptor distance distributions is reflective of increasing flexibility of the liposomes with increasing asymmetry of their constituent lipids. Thus, the results from AFM and FRET studies are complementary to each other and indicates that an increase in asymmetry of the hydrophobic lipid chains increases elasticity and or flexibility of the corresponding liposomes. Cell biology experiments confirm that liposomal flexibility or rigidity directly influences their cellular transfection efficiency, where Lip1814 is found to be superior than the other two liposomes manifesting that a critical balance between flexibility and rigidity of the cationic liposomes is key to efficient cellular uptake. Taken together, our studies reveal how asymmetry in the molecular architecture of the hydrophobic lipid chains influences the microelastic properties of the liposomes, and hence, their cellular uptake efficiency.
纳米载体的微观弹性在细胞摄取中起着重要作用,这是生物医学研究的一个重要方面。在此,我们使用原子力显微镜纳米压痕力谱和Förster 共振能量转移(FRET)测量来探测三种基于二烷基二羟乙基氯化铵的新型阳离子脂质体的微弹性性质,这些脂质体的疏水链具有不对称性(Lip1818、Lip1814 和 Lip1810)。原子力显微镜数据表明,阳离子脂质(Lip1818)疏水链的对称性赋予所得脂质体比基于不对称脂质(Lip1814 和 Lip1810)更高的刚性。发现阳离子脂质体的刚性随疏水脂质链的不对称性增加而降低,顺序为 Lip1818 > Lip1814 > lip1810。香豆素 500(供体)和甲臜 540(受体)之间的 FRET 测量表明,供体-受体距离(r)的概率分布(P(r))的半峰全宽(hw)随疏水脂质链的不对称性增加而增加,Lip1818 < Lip1814 < Lip1810。这种供体-受体距离分布的宽度(hw)的增加反映了随着组成脂质的不对称性增加,脂质体的灵活性增加。因此,原子力显微镜和 FRET 研究的结果是互补的,表明疏水脂质链的不对称性增加会增加相应脂质体的弹性和/或灵活性。细胞生物学实验证实,脂质体的灵活性或刚性直接影响其细胞转染效率,其中 Lip1814 优于其他两种脂质体,表明阳离子脂质体的灵活性和刚性之间的关键平衡是有效细胞摄取的关键。总之,我们的研究揭示了疏水脂质链的分子结构不对称性如何影响脂质体的微弹性特性,进而影响其细胞摄取效率。