Suppr超能文献

基于脑电图信号双谱特征的中风患者情绪评估

An Emotion Assessment of Stroke Patients by Using Bispectrum Features of EEG Signals.

作者信息

Yean Choong Wen, Wan Ahmad Wan Khairunizam, Mustafa Wan Azani, Murugappan Murugappan, Rajamanickam Yuvaraj, Adom Abdul Hamid, Omar Mohammad Iqbal, Zheng Bong Siao, Junoh Ahmad Kadri, Razlan Zuradzman Mohamad, Bakar Shahriman Abu

机构信息

Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia.

Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia.

出版信息

Brain Sci. 2020 Sep 25;10(10):672. doi: 10.3390/brainsci10100672.

Abstract

Emotion assessment in stroke patients gives meaningful information to physiotherapists to identify the appropriate method for treatment. This study was aimed to classify the emotions of stroke patients by applying bispectrum features in electroencephalogram (EEG) signals. EEG signals from three groups of subjects, namely stroke patients with left brain damage (LBD), right brain damage (RBD), and normal control (NC), were analyzed for six different emotional states. The estimated bispectrum mapped in the contour plots show the different appearance of nonlinearity in the EEG signals for different emotional states. Bispectrum features were extracted from the alpha (8-13) Hz, beta (13-30) Hz and gamma (30-49) Hz bands, respectively. The k-nearest neighbor (KNN) and probabilistic neural network (PNN) classifiers were used to classify the six emotions in LBD, RBD and NC. The bispectrum features showed statistical significance for all three groups. The beta frequency band was the best performing EEG frequency-sub band for emotion classification. The combination of alpha to gamma bands provides the highest classification accuracy in both KNN and PNN classifiers. Sadness emotion records the highest classification, which was 65.37% in LBD, 71.48% in RBD and 75.56% in NC groups.

摘要

对中风患者进行情绪评估可为物理治疗师提供有意义的信息,以便确定合适的治疗方法。本研究旨在通过应用脑电图(EEG)信号中的双谱特征对中风患者的情绪进行分类。分析了三组受试者的EEG信号,即左侧脑损伤(LBD)、右侧脑损伤(RBD)的中风患者以及正常对照(NC),针对六种不同的情绪状态进行分析。在等高线图中绘制的估计双谱显示了不同情绪状态下EEG信号中非线性的不同表现。分别从α(8 - 13)Hz、β(13 - 30)Hz和γ(30 - 49)Hz频段提取双谱特征。使用k近邻(KNN)和概率神经网络(PNN)分类器对LBD、RBD和NC中的六种情绪进行分类。双谱特征对所有三组均显示出统计学意义。β频段是情绪分类中表现最佳的EEG频率子频段。在KNN和PNN分类器中,α到γ频段的组合提供了最高的分类准确率。悲伤情绪的分类准确率最高,在LBD组中为65.37%,在RBD组中为71.48%,在NC组中为75.56%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验