Suppr超能文献

一种基于分布式架构的支持 D2D 技术的面向内容的网络的新型加权聚类算法。

A Novel Weighted Clustering Algorithm Supported by a Distributed Architecture for D2D Enabled Content-Centric Networks.

机构信息

Department of Mechanical & Electrical Engineering, SF&AT, Massey University, Auckland 0632, New Zealand.

出版信息

Sensors (Basel). 2020 Sep 25;20(19):5509. doi: 10.3390/s20195509.

Abstract

Next generation cellular systems need efficient content-distribution schemes. Content-sharing via Device-to-Device (D2D) clustered networks has emerged as a popular approach for alleviating the burden on the cellular network. In this article, we utilize Content-Centric Networking and Network Virtualization to propose a distributed architecture, that supports efficient content delivery. We propose to use clustering at the user level for content-distribution. A weighted multifactor clustering algorithm is proposed for grouping the D2D User Equipment (DUEs) sharing a common interest. The proposed algorithm is evaluated in terms of energy efficiency, area spectral efficiency, and throughput. The effect of the number of clusters on these performance parameters is also discussed. The proposed algorithm has been further modified to allow for a tradeoff between fairness and other performance parameters. A comprehensive simulation study demonstrates that the proposed clustering algorithm is more flexible and outperforms several classical and state-of-the-art algorithms.

摘要

下一代蜂窝系统需要高效的内容分发方案。通过设备到设备 (D2D) 集群网络进行内容共享已成为缓解蜂窝网络负担的一种流行方法。在本文中,我们利用内容中心网络和网络虚拟化来提出一种支持高效内容交付的分布式架构。我们建议在用户级别使用聚类进行内容分发。提出了一种加权多因素聚类算法,用于对共享共同兴趣的 D2D 用户设备 (DUE) 进行分组。该算法在能量效率、面积频谱效率和吞吐量方面进行了评估。还讨论了簇的数量对这些性能参数的影响。该算法进一步修改为允许在公平性和其他性能参数之间进行权衡。全面的仿真研究表明,所提出的聚类算法更加灵活,并且优于几种经典和最先进的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b8f/7582748/16c22df21fad/sensors-20-05509-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验