Suppr超能文献

无锚定匹配调整间接比较(MAIC)在时间事件结局的单臂试验证据综合中的性能。

Performance of unanchored matching-adjusted indirect comparison (MAIC) for the evidence synthesis of single-arm trials with time-to-event outcomes.

机构信息

School of Public Health (Shenzhen), Sun Yat-sen University, Room 215, Mingde Garden #6, 132 East Outer Ring Road, Pan-yu District, Guangzhou, Guangdong, China.

Department of Pharmaceutical and Health Economics, University of Southern California, 635 Downey Way, Verna & Peter Dauterive Hall (VPD) Suite 210, Los Angeles, CA, 90089-3333, USA.

出版信息

BMC Med Res Methodol. 2020 Sep 29;20(1):241. doi: 10.1186/s12874-020-01124-6.

Abstract

BACKGROUND

The objectives of the present study were to evaluate the performance of a time-to-event data reconstruction method, to assess the bias and efficiency of unanchored matching-adjusted indirect comparison (MAIC) methods for the analysis of time-to-event outcomes, and to propose an approach to adjust the bias of unanchored MAIC when omitted confounders across trials may exist.

METHODS

To evaluate the methods using a Monte Carlo approach, a thousand repetitions of simulated data sets were generated for two single-arm trials. In each repetition, researchers were assumed to have access to individual-level patient data (IPD) for one of the trials and the published Kaplan-Meier curve of another. First, we compared the raw data and the reconstructed IPD using Cox regressions to determine the performance of the data reconstruction method. Then, we evaluated alternative unanchored MAIC strategies with varying completeness of covariates for matching in terms of bias, efficiency, and confidence interval coverage. Finally, we proposed a bias factor-adjusted approach to gauge the true effects when unanchored MAIC estimates might be biased due to omitted variables.

RESULTS

Reconstructed data sufficiently represented raw data in the sense that the difference between the raw and reconstructed data was not statistically significant over the one thousand repetitions. Also, the bias of unanchored MAIC estimates ranged from minimal to substantial as the set of covariates became less complete. More, the confidence interval estimates of unanchored MAIC were suboptimal even using the complete set of covariates. Finally, the bias factor-adjusted method we proposed substantially reduced omitted variable bias.

CONCLUSIONS

Unanchored MAIC should be used to analyze time-to-event outcomes with caution. The bias factor may be used to gauge the true treatment effect.

摘要

背景

本研究的目的是评估一种生存数据重构方法的性能,评估无锚定匹配调整间接比较(MAIC)方法分析生存数据的偏倚和效率,并提出一种方法来调整当试验间可能存在遗漏混杂因素时无锚定 MAIC 的偏倚。

方法

为了使用蒙特卡罗方法评估这些方法,我们生成了两个单臂试验的一千次重复模拟数据集。在每次重复中,假设研究人员可以访问一个试验的个体水平患者数据(IPD)和另一个试验的已发表的 Kaplan-Meier 曲线。首先,我们使用 Cox 回归比较原始数据和重构的 IPD,以确定数据重构方法的性能。然后,我们根据匹配的协变量的完整性,评估了不同的无锚定 MAIC 策略的偏倚、效率和置信区间覆盖。最后,我们提出了一种偏倚因子调整方法,当无锚定 MAIC 估计可能由于遗漏变量而存在偏倚时,用于估计真实效应。

结果

重构数据在很大程度上代表了原始数据,即在一千次重复中,原始数据和重构数据之间的差异没有统计学意义。此外,随着协变量集的不完整性增加,无锚定 MAIC 估计的偏倚范围从最小到显著。此外,即使使用完整的协变量集,无锚定 MAIC 的置信区间估计也不理想。最后,我们提出的偏倚因子调整方法大大降低了遗漏变量的偏倚。

结论

在分析生存数据时应谨慎使用无锚定 MAIC。偏倚因子可用于估计真实的治疗效果。

相似文献

3
Two-stage matching-adjusted indirect comparison.两阶段匹配调整间接比较。
BMC Med Res Methodol. 2022 Aug 8;22(1):217. doi: 10.1186/s12874-022-01692-9.

引用本文的文献

6
Methods for Indirect Treatment Comparison: Results from a Systematic Literature Review.间接治疗比较方法:系统文献综述结果
J Mark Access Health Policy. 2024 Apr 16;12(2):58-80. doi: 10.3390/jmahp12020006. eCollection 2024 Jun.
10
Two-stage matching-adjusted indirect comparison.两阶段匹配调整间接比较。
BMC Med Res Methodol. 2022 Aug 8;22(1):217. doi: 10.1186/s12874-022-01692-9.

本文引用的文献

1
Multilevel network meta-regression for population-adjusted treatment comparisons.用于人群调整治疗比较的多水平网络meta回归
J R Stat Soc Ser A Stat Soc. 2020 Jun;183(3):1189-1210. doi: 10.1111/rssa.12579. Epub 2020 Jun 7.
4
Using simulation studies to evaluate statistical methods.运用模拟研究评估统计方法。
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
8
Sensitivity Analysis in Observational Research: Introducing the E-Value.观察性研究中的敏感性分析:引入 E 值。
Ann Intern Med. 2017 Aug 15;167(4):268-274. doi: 10.7326/M16-2607. Epub 2017 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验