Suppr超能文献

用于人群调整治疗比较的多水平网络meta回归

Multilevel network meta-regression for population-adjusted treatment comparisons.

作者信息

Phillippo David M, Dias Sofia, Ades A E, Belger Mark, Brnabic Alan, Schacht Alexander, Saure Daniel, Kadziola Zbigniew, Welton Nicky J

机构信息

University of Bristol UK.

University of York and University of Bristol UK.

出版信息

J R Stat Soc Ser A Stat Soc. 2020 Jun;183(3):1189-1210. doi: 10.1111/rssa.12579. Epub 2020 Jun 7.

Abstract

Standard network meta-analysis (NMA) and indirect comparisons combine aggregate data from multiple studies on treatments of interest, assuming that any effect modifiers are balanced across populations. Population adjustment methods relax this assumption using individual patient data from one or more studies. However, current matching-adjusted indirect comparison and simulated treatment comparison methods are limited to pairwise indirect comparisons and cannot predict into a specified target population. Existing meta-regression approaches incur aggregation bias. We propose a new method extending the standard NMA framework. An individual level regression model is defined, and aggregate data are fitted by integrating over the covariate distribution to form the likelihood. Motivated by the complexity of the closed form integration, we propose a general numerical approach using quasi-Monte-Carlo integration. Covariate correlation structures are accounted for by using copulas. Crucially for decision making, comparisons may be provided in any target population with a given covariate distribution. We illustrate the method with a network of plaque psoriasis treatments. Estimated population-average treatment effects are similar across study populations, as differences in the distributions of effect modifiers are small. A better fit is achieved than a random effects NMA, uncertainty is substantially reduced by explaining within- and between-study variation, and estimates are more interpretable.

摘要

标准网络荟萃分析(NMA)和间接比较结合了来自多项关于感兴趣治疗的研究的汇总数据,假设任何效应修饰因素在各人群中是平衡的。人群调整方法利用来自一项或多项研究的个体患者数据放宽了这一假设。然而,当前的匹配调整间接比较和模拟治疗比较方法仅限于成对间接比较,且无法预测到指定的目标人群。现有的荟萃回归方法会产生汇总偏差。我们提出了一种扩展标准NMA框架的新方法。定义了个体水平回归模型,并通过对协变量分布进行积分来拟合汇总数据以形成似然函数。鉴于闭式积分的复杂性,我们提出了一种使用拟蒙特卡罗积分的通用数值方法。通过使用copulas来考虑协变量相关结构。对于决策至关重要的是,可以在具有给定协变量分布的任何目标人群中进行比较。我们用斑块状银屑病治疗网络来说明该方法。各研究人群中估计的人群平均治疗效果相似,因为效应修饰因素分布的差异较小。与随机效应NMA相比,拟合效果更好,通过解释研究内和研究间的变异,不确定性大幅降低,且估计值更具可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验