Suppr超能文献

自然语言处理能否帮助区分中国的炎症性肠病?应用随机森林和卷积神经网络方法的模型。

Can natural language processing help differentiate inflammatory intestinal diseases in China? Models applying random forest and convolutional neural network approaches.

机构信息

Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

Department of Automation, Tsinghua University, Beijing, 100084, China.

出版信息

BMC Med Inform Decis Mak. 2020 Sep 29;20(1):248. doi: 10.1186/s12911-020-01277-w.

Abstract

BACKGROUND

Differentiating between ulcerative colitis (UC), Crohn's disease (CD) and intestinal tuberculosis (ITB) using endoscopy is challenging. We aimed to realize automatic differential diagnosis among these diseases through machine learning algorithms.

METHODS

A total of 6399 consecutive patients (5128 UC, 875 CD and 396 ITB) who had undergone colonoscopy examinations in the Peking Union Medical College Hospital from January 2008 to November 2018 were enrolled. The input was the description of the endoscopic image in the form of free text. Word segmentation and key word filtering were conducted as data preprocessing. Random forest (RF) and convolutional neural network (CNN) approaches were applied to different disease entities. Three two-class classifiers (UC and CD, UC and ITB, and CD and ITB) and a three-class classifier (UC, CD and ITB) were built.

RESULTS

The classifiers built in this research performed well, and the CNN had better performance in general. The RF sensitivities/specificities of UC-CD, UC-ITB, and CD-ITB were 0.89/0.84, 0.83/0.82, and 0.72/0.77, respectively, while the values for the CNN of CD-ITB were 0.90/0.77. The precisions/recalls of UC-CD-ITB when employing RF were 0.97/0.97, 0.65/0.53, and 0.68/0.76, respectively, and when employing the CNN were 0.99/0.97, 0.87/0.83, and 0.52/0.81, respectively.

CONCLUSIONS

Classifiers built by RF and CNN approaches had excellent performance when classifying UC with CD or ITB. For the differentiation of CD and ITB, high specificity and sensitivity were achieved as well. Artificial intelligence through machine learning is very promising in helping unexperienced endoscopists differentiate inflammatory intestinal diseases.

CONFERENCE

The abstract of this article has won the first prize of the Young Investigator Award during the Asian Pacific Digestive Week (APDW) 2019 held in Kolkata, India.

摘要

背景

通过内镜鉴别溃疡性结肠炎(UC)、克罗恩病(CD)和肠结核(ITB)具有挑战性。我们旨在通过机器学习算法实现这些疾病的自动鉴别诊断。

方法

纳入 2008 年 1 月至 2018 年 11 月期间在北京协和医院行结肠镜检查的 6399 例连续患者(5128 例 UC、875 例 CD 和 396 例 ITB)。输入是内镜图像描述的自由文本形式。作为数据预处理,进行分词和关键词过滤。应用随机森林(RF)和卷积神经网络(CNN)方法对不同的疾病实体进行分析。建立了三个二分类分类器(UC 和 CD、UC 和 ITB、CD 和 ITB)和一个三分类分类器(UC、CD 和 ITB)。

结果

本研究构建的分类器性能良好,CNN 总体性能更好。RF 对 UC-CD、UC-ITB 和 CD-ITB 的敏感性/特异性分别为 0.89/0.84、0.83/0.82 和 0.72/0.77,而 CNN 对 CD-ITB 的值为 0.90/0.77。采用 RF 时,UC-CD-ITB 的准确率/召回率分别为 0.97/0.97、0.65/0.53 和 0.68/0.76,采用 CNN 时分别为 0.99/0.97、0.87/0.83 和 0.52/0.81。

结论

RF 和 CNN 方法构建的分类器在鉴别 UC 与 CD 或 ITB 时具有出色的性能。对于 CD 和 ITB 的鉴别,也实现了高特异性和敏感性。通过机器学习的人工智能在帮助无经验的内镜医生鉴别炎症性肠病方面具有广阔的前景。

会议

本文摘要在印度加尔各答举行的 2019 年亚太消化周(APDW)会议上获得了青年研究员奖一等奖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4889/7526202/d2c2946e50a7/12911_2020_1277_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验