Laboratoire de Nanotechnologies Pharmaceutiques, faculté de pharmacie, Université de Montréal, CP6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
Université de Lyon (UCBL), Biologie Tissulaire et Ingénierie Thérapeutique UMR 5305 et Vecteurs Colloïdaux et Transport Tissulaire, Institut des Sciences Pharmaceutiques et Biologiques, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France.
Mater Sci Eng C Mater Biol Appl. 2020 Sep;114:110999. doi: 10.1016/j.msec.2020.110999. Epub 2020 May 8.
Organogels prepared with low molecular weight organogelators to structure liquid oils represent excellent matrices for the controlled delivery of a wide variety of drug molecules. Although studies on organogel systems are reported in the literature, relatively few investigate their potential as gels formed in situ intended for drug delivery. This study reports the development of injectable subcutaneous 12- hydroxystearic acid (12-HSA) organogels for the delivery of both lipophilic and hydrophilic drugs. The rheological characterization (flow, dynamic temperature ramp and amplitude oscillatory measurements) and physicochemical properties (syringeability, swelling and degradation studies), as well as permeability and cytotoxicity were analyzed to gain insights into the influence of the gel composition (surfactant addition, organogelator concentration) on the gelation process and organogel properties. Sol-gel phase transition temperature (Tgel) and gel-sol phase transition temperature (Tmelt) were determined by the tube-inverting method and complementary rheology studies. An increase in 12-HSA concentration led to an augmentation in gel strength and storage (G') and loss (G″) moduli values, evidencing the self-assembly of crystalline gelator structure entrapping the oil phase into a three-dimensional (3D) network. The addition of polysorbate 80 (Tween 80, T80) surfactant molecules in the system caused a weaker gel-like structure, with lower flow rate during syringeability assays, despite its lower apparent viscosity compared to those of 12-HSA organogels. In addition, the swelling studies of 12-HSA/12-HSA T80 organogels as a function of time in phosphate buffered saline (PBS) revealed that the erosion rates were modulated by the organogel compositions. The permeability of acyclovir (ACV) and clotrimazole (CTM), hydrophilic and lipophilic model drugs, respectively, loaded in 12-HSA-based organogels, was assessed in Franz diffusion cells. Organogel-loaded drugs presented lower in vitro release rates and ex vivo drug permeabilities compared to the corresponding drug solutions. Furthermore, 12-HSA T80 organogel could slow down the release of ACV by a factor of about 2.6-fold, up to 6 h, compared to CTM-loaded 12-HSA organogels. Finally, the cytotoxicity of 12-HSA-based organogels was evaluated through in vitro cell viability assays in human foreskin fibroblasts (HFF). Increased 12-HSA concentration resulted in higher cytotoxic effect, with a higher test sensitivity observed for the 3D collagen-embedded cell layer setup matrix versus 2-D cell cultures. Our results support the hypothesis that 12-HSA-based organogels are promising systems for controlled drug delivery as in situ-forming implants.
用低分子量的有机凝胶剂制备的有机凝胶,将液体油结构化,代表了控制多种药物分子释放的极佳基质。尽管文献中有关于有机凝胶系统的研究,但相对较少的研究调查了它们作为原位形成的用于药物输送的凝胶的潜力。本研究报告了可注射的皮下 12-羟基硬脂酸(12-HSA)有机凝胶的开发,用于输送亲脂性和亲水性药物。通过流变特性(流动,动态温度斜坡和振幅振荡测量)和物理化学性质(可注射性,溶胀和降解研究)以及渗透性和细胞毒性进行了分析,以深入了解凝胶组成(表面活性剂的添加,有机凝胶剂浓度)对凝胶化过程和有机凝胶性质的影响。通过管反转法和补充流变学研究确定溶胶-凝胶相转变温度(Tgel)和凝胶-溶胶相转变温度(Tmelt)。12-HSA 浓度的增加导致凝胶强度和储能(G')和损耗(G")模量值的增加,证明了结晶凝胶剂结构的自组装,将油相捕获到三维(3D)网络中。尽管与 12-HSA 有机凝胶相比,表面活性剂吐温 80(Tween 80,T80)分子在系统中的添加导致凝胶状结构较弱,但在可注射性测定中的流速较低。此外,作为时间函数的 12-HSA/T80 有机凝胶的溶胀研究在磷酸盐缓冲盐水(PBS)中,发现侵蚀速率可通过有机凝胶组成进行调节。在 Franz 扩散池中评估了亲水性和疏水性模型药物阿昔洛韦(ACV)和克霉唑(CTM)负载在基于 12-HSA 的有机凝胶中的渗透性。与相应的药物溶液相比,负载药物的有机凝胶的体外释放率和体外药物渗透性较低。此外,与负载 CTM 的 12-HSA 有机凝胶相比,12-HSA/T80 有机凝胶可以将 ACV 的释放速度减慢约 2.6 倍,长达 6 小时。最后,通过体外人包皮成纤维细胞(HFF)活力测定评估了基于 12-HSA 的有机凝胶的细胞毒性。12-HSA 浓度的增加导致更高的细胞毒性作用,在 3D 胶原嵌入细胞层设置基质与 2D 细胞培养相比,观察到更高的测试灵敏度。我们的结果支持这样的假设,即基于 12-HSA 的有机凝胶是作为原位形成的植入物进行药物控制释放的有前途的系统。