Division of Cancer Therapeutics, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK.
Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
Sci Rep. 2020 Sep 29;10(1):16000. doi: 10.1038/s41598-020-71969-w.
Heat shock protein 90 (Hsp90) is a molecular chaperone that plays an important role in tumour biology by promoting the stabilisation and activity of oncogenic 'client' proteins. Inhibition of Hsp90 by small-molecule drugs, acting via its ATP hydrolysis site, has shown promise as a molecularly targeted cancer therapy. Owing to the importance of Hop and other tetratricopeptide repeat (TPR)-containing cochaperones in regulating Hsp90 activity, the Hsp90-TPR domain interface is an alternative site for inhibitors, which could result in effects distinct from ATP site binders. The TPR binding site of Hsp90 cochaperones includes a shallow, positively charged groove that poses a significant challenge for druggability. Herein, we report the apo, solution-state structure of Hop TPR2A which enables this target for NMR-based screening approaches. We have designed prototype TPR ligands that mimic key native 'carboxylate clamp' interactions between Hsp90 and its TPR cochaperones and show that they block binding between Hop TPR2A and the Hsp90 C-terminal MEEVD peptide. We confirm direct TPR-binding of these ligands by mapping H-N HSQC chemical shift perturbations to our new NMR structure. Our work provides a novel structure, a thorough assessment of druggability and robust screening approaches that may offer a potential route, albeit difficult, to address the chemically challenging nature of the Hop TPR2A target, with relevance to other TPR domain interactors.
热休克蛋白 90(Hsp90)是一种分子伴侣,通过促进致癌“客户”蛋白的稳定和活性,在肿瘤生物学中发挥重要作用。通过其 ATP 水解位点作用的小分子药物抑制 Hsp90 已显示出作为一种分子靶向癌症治疗的潜力。由于 Hop 和其他含有四肽重复(TPR)的共伴侣在调节 Hsp90 活性方面的重要性,Hsp90-TPR 结构域界面是抑制剂的替代位点,这可能导致与 ATP 结合位点结合剂不同的效果。Hsp90 共伴侣的 TPR 结合位点包括一个浅的、带正电荷的凹槽,这对成药性构成了重大挑战。在此,我们报告了 Hop TPR2A 的无配体、溶液状态结构,这使得该结构成为基于 NMR 的筛选方法的靶标。我们设计了原型 TPR 配体,模拟了 Hsp90 与其 TPR 共伴侣之间的关键天然“羧酸盐夹”相互作用,并表明它们阻止了 Hop TPR2A 与 Hsp90 C 端 MEEVD 肽之间的结合。我们通过将 H-N HSQC 化学位移扰动映射到我们的新 NMR 结构,证实了这些配体的直接 TPR 结合。我们的工作提供了一种新的结构,对成药性进行了全面评估,并提供了强大的筛选方法,尽管困难重重,但可能为解决 Hop TPR2A 靶标的化学挑战性提供潜在途径,这与其他 TPR 结构域相互作用者有关。