Suppr超能文献

基于静电自组装的柔性纸质湿度传感器,具有高灵敏度和卓越耐久性。

Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability.

作者信息

Zhu Penghui, Kuang Yudi, Wei Yuan, Li Fang, Ou Huajie, Jiang Feng, Chen Gang

机构信息

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.

Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China.

出版信息

Chem Eng J. 2021 Jan 15;404:127105. doi: 10.1016/j.cej.2020.127105. Epub 2020 Sep 24.

Abstract

Humidity sensors have been widely used for humidity monitoring in industrial fields. However, the application of conventional sensors is limited due to the structural rigidity, high cost, and time-consuming integration process. Owing to the good hydrophilicity, biodegradability, and low cost of cellulose, the sensors built on cellulose bulk materials are considered a feasible method to overcome these drawbacks while providing reasonable performance. Herein, we design a flexible paper-based humidity sensor based on conductive 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose fibers/carbon nanotubes (TOCFs/CNTs) conformal fibers network. The CNTs are dispersed by cationic cetyl trimethyl ammonium bromide (CTAB), which introduces positive charges on the CNTs surface. The conductive fibers are achieved by an electrostatic self-assembly process that positively charged CNTs are adsorbed to the surface of negatively charged TOCFs. The vast number of hydrophilic hydroxyl groups on the surface of TOCFs provide more water molecules adsorption sites and facilitate the electron transfer from water molecules to CNTs, endowing the sensor with an excellent humidity responsive property. Besides, the swelling of the TOCFs greatly damages the conductive CNTs network and further promotes the humidity sensitive performance of the sensor. Benefiting from the unique structure, the obtained sensor exhibits a maximum response value of 87.0% ( , and the response limit is 100%), outstanding linearity (R = 0.995) between 11 and 95% relative humidity (RH), superior bending (with a curvature of 2.1 cm) and folding (up to 50 times) durability, and good long-time stability (more than 3 months). Finally, as a proof of concept, the sensor demonstrates an excellent responsive property to human breath, fingertip humidity, and the change of air humidity, indicating a great potential towards practical applications.

摘要

湿度传感器已广泛应用于工业领域的湿度监测。然而,传统传感器由于结构刚性、成本高以及集成过程耗时等原因,其应用受到限制。由于纤维素具有良好的亲水性、生物降解性和低成本,基于纤维素块状材料构建的传感器被认为是克服这些缺点并同时提供合理性能的可行方法。在此,我们设计了一种基于导电的2,2,6,6-四甲基哌啶-1-氧基(TEMPO)氧化纤维素纤维/碳纳米管(TOCFs/CNTs)共形纤维网络的柔性纸质湿度传感器。碳纳米管由阳离子十六烷基三甲基溴化铵(CTAB)分散,CTAB在碳纳米管表面引入正电荷。导电纤维通过静电自组装过程实现,带正电荷的碳纳米管吸附到带负电荷的TOCFs表面。TOCFs表面大量的亲水性羟基提供了更多的水分子吸附位点,并促进了电子从水分子向碳纳米管的转移,赋予传感器优异的湿度响应特性。此外,TOCFs的膨胀极大地破坏了导电碳纳米管网络,进一步提升了传感器的湿度敏感性能。受益于独特的结构,所制备的传感器表现出87.0%的最大响应值( ,响应极限为100%),在11%至95%相对湿度(RH)之间具有出色的线性度(R = 0.995),具有优异的弯曲(曲率为2.1 cm)和折叠(高达50次)耐久性,以及良好的长期稳定性(超过3个月)。最后,作为概念验证示例,该传感器对人体呼出气体、指尖湿度和空气湿度变化表现出优异的响应特性,表明其在实际应用中具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验