Lee Junghwa, Dupre Nicolas, Jeong Mihee, Kang ShinYoung, Avdeev Maxim, Gong Yue, Gu Lin, Yoon Won-Sub, Kang Byoungwoo
Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea.
Institut des Materiaux Jean Rouxel (IMN) Université de Nantes CNRS UMR 6502, 2 rue de la Houssiniere, BP 32229 Nantes Cedex 3 44322 France.
Adv Sci (Weinh). 2020 Jul 20;7(17):2001658. doi: 10.1002/advs.202001658. eCollection 2020 Sep.
To meet the growing demand for global electrical energy storage, high-energy-density electrode materials are required for Li-ion batteries. To overcome the limit of the theoretical energy density in conventional electrode materials based solely on the transition metal redox reaction, the oxygen redox reaction in electrode materials has become an essential component because it can further increase the energy density by providing additional available electrons. However, the increase in the contribution of the oxygen redox reaction in a material is still limited due to the lack of understanding its controlled parameters. Here, it is first proposed that Li-transition metals (TMs) inter-diffusion between the phases in Li-rich materials can be a key parameter for controlling the oxygen redox reaction in Li-rich materials. The resulting Li-rich materials can achieve fully exploited oxygen redox reaction and thereby can deliver the highest reversible capacity leading to the highest energy density, ≈1100 Wh kg among Co-free Li-rich materials. The strategy of controlling Li/transition metals (TMs) inter-diffusion between the phases in Li-rich materials will provide feasible way for further achieving high-energy-density electrode materials via enhancing the oxygen redox reaction for high-performance Li-ion batteries.
为满足全球对电能存储不断增长的需求,锂离子电池需要高能量密度的电极材料。为克服仅基于过渡金属氧化还原反应的传统电极材料理论能量密度的限制,电极材料中的氧氧化还原反应已成为一个重要组成部分,因为它可以通过提供额外的可用电子进一步提高能量密度。然而,由于对其控制参数缺乏了解,材料中氧氧化还原反应贡献的增加仍然有限。在此,首次提出富锂材料中锂-过渡金属(TMs)在相之间的相互扩散可以作为控制富锂材料中氧氧化还原反应的关键参数。由此得到的富锂材料可以实现充分利用的氧氧化还原反应,从而能够提供最高的可逆容量,在无钴富锂材料中达到最高能量密度,约为1100 Wh/kg。控制富锂材料中锂/过渡金属(TMs)在相之间相互扩散的策略将为通过增强氧氧化还原反应进一步实现高性能锂离子电池的高能量密度电极材料提供可行途径。