Suppr超能文献

心室颤动频率变化可能有助于预测心脏骤停大鼠模型中的除颤成功率。

Frequency Variation of Ventricular Fibrillation May Help Predict Successful Defibrillation in a Rat Model of Cardiac Arrest.

作者信息

Chen Wei-Ting, Tsai Min-Shan, Tsai Shang-Ho, Jiang Yu-Chen Fang, Yang Teck-Jin, Huang Chien-Hua, Chang Wei-Tien, Chen Wen-Jone

机构信息

National Taiwan University Medical College and Hospital Department of Emergency Medicine Taipei Taiwan.

National Taiwan University Hospital Hsin-Chu Branch Department of Emergency Medicine Hsinchu Taiwan.

出版信息

J Acute Med. 2019 Jun 1;9(2):49-58. doi: 10.6705/j.jacme.201906_9(2).0002.

Abstract

BACKGROUND

To evaluate whether the frequency variation of ventricular fibrillation (VF) helps to predict successful defibrillation in a rat model of cardiac arrest.

METHODS

VF was induced in rats followed by cardiopulmonary resuscitation and then defibrillation. The electrocardiographic signals of 30 rats with first-shock success were obtained from our previous animal experiments, and 300 rats without first-shock success were selected as control. The VF waveform immediately before the first defibrillation was analyzed.

RESULTS

Eighty-eight percentages of the frequency variations of an electrocardiogram (ECG) record falling in the range -9.5-9.5 Hz was selected with sensitivity of 0.8, specificity of 0.583, and area under curve (AUC) of 0.708. Compared with amplitude spectrum area (AMSA) (sensitivity = 0.767, specificity= 0.547, and AUC = 0.678), combining frequency variation and AMSA significantly increases the predictability with sensitivity of 0.933, specificity of 0.493, and AUC of 0.732 ( = 0.005).

CONCLUSIONS

The frequency variation of VF may serve a useful parameter to predict defibrillation success.

摘要

背景

评估室颤(VF)频率变化是否有助于预测心脏骤停大鼠模型中的除颤成功率。

方法

诱导大鼠发生室颤,随后进行心肺复苏及除颤。从我们之前的动物实验中获取30只首次除颤成功大鼠的心电图信号,并选取300只首次除颤未成功的大鼠作为对照。分析首次除颤前即刻的室颤波形。

结果

选择心电图(ECG)记录中88%的频率变化落在-9.5至9.5 Hz范围内,其敏感性为0.8,特异性为0.583,曲线下面积(AUC)为0.708。与振幅谱面积(AMSA)(敏感性=0.767,特异性=0.547,AUC = 0.678)相比,将频率变化与AMSA相结合可显著提高预测能力,敏感性为0.933,特异性为0.493,AUC为0.732(P = 0.005)。

结论

室颤频率变化可能是预测除颤成功的一个有用参数。

相似文献

本文引用的文献

9
Waveform analysis of ventricular fibrillation to predict defibrillation.心室颤动的波形分析以预测除颤效果。
Curr Opin Crit Care. 2005 Jun;11(3):192-9. doi: 10.1097/01.ccx.0000161725.71211.42.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验