Suppr超能文献

去趋势波动分析可预测院外室颤性心脏骤停除颤的成功。

Detrended fluctuation analysis predicts successful defibrillation for out-of-hospital ventricular fibrillation cardiac arrest.

机构信息

Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.

出版信息

Resuscitation. 2010 Mar;81(3):297-301. doi: 10.1016/j.resuscitation.2009.12.003. Epub 2010 Jan 13.

Abstract

AIMS

Repeated failed shocks for ventricular fibrillation (VF) in out-of-hospital cardiac arrest (OOHCA) can worsen the outcome. It is very important to rapidly distinguish between early and late VF. We hypothesised that VF waveform analysis based on detrended fluctuation analysis (DFA) can help predict successful defibrillation.

METHODS

Electrocardiogram (ECG) recordings of VF signals from automated external defibrillators (AEDs) were obtained for subjects with OOHCA in Taipei city. To examine the time effect on DFA, we also analysed VF signals in subjects who experienced sudden cardiac death during Holter study from PhysioNet, a publicly accessible database. Waveform parameters including root-mean-squared (RMS) amplitude, mean amplitude, amplitude spectrum analysis (AMSA), frequency analysis as well as fractal measurements including scaling exponent (SE) and DFA were calculated. A defibrillation was regarded as successful when VF was converted to an organised rhythm within 5s after each defibrillation.

RESULTS

A total of 155 OOHCA subjects (37 successful and 118 unsuccessful defibrillations) with VF were included for analysis. Among the VF waveform parameters, only AMSA (7.61+/-3.30 vs. 6.30+/-3.13, P=0.028) and DFAalpha2 (0.38+/-0.24 vs. 0.49+/-0.24, P=0.013) showed significant difference between subjects with successful and unsuccessful defibrillation. The area under the curves (AUCs) for AMSA and DFAalpha2 was 0.63 (95% confidence interval (CI)=0.52-0.73) and 0.65 (95% CI=0.54-0.75), respectively. Among the waveform parameters, only DFAalpha2, SE and dominant frequency showed significant time effect.

CONCLUSIONS

The VF waveform analysis based on DFA could help predict first-shock defibrillation success in patients with OOHCA. The clinical utility of the approach deserves further investigation.

摘要

目的

院外心脏骤停(OOHCA)中室颤(VF)反复电击失败会使预后恶化。快速区分早期和晚期 VF 非常重要。我们假设基于去趋势波动分析(DFA)的 VF 波形分析可以帮助预测除颤成功。

方法

从台北市 OOHCA 患者的自动体外除颤器(AED)获得 VF 信号的心电图(ECG)记录。为了检查时间对 DFA 的影响,我们还分析了 PhysioNet 中接受 Holter 研究的发生心源性猝死患者的 VF 信号,PhysioNet 是一个公开可访问的数据库。计算了波形参数,包括均方根(RMS)幅度、平均幅度、幅度谱分析(AMSA)、频率分析以及分形测量,包括标度指数(SE)和 DFA。当 VF 在每次除颤后 5s 内转换为有组织的节律时,认为除颤成功。

结果

共纳入 155 例 OOHCA 患者(37 例成功除颤和 118 例失败除颤)进行分析。在 VF 波形参数中,只有 AMSA(7.61+/-3.30 与 6.30+/-3.13,P=0.028)和 DFAalpha2(0.38+/-0.24 与 0.49+/-0.24,P=0.013)在成功除颤和失败除颤患者之间有显著差异。AMSA 和 DFAalpha2 的曲线下面积(AUC)分别为 0.63(95%置信区间(CI)=0.52-0.73)和 0.65(95%CI=0.54-0.75)。在波形参数中,只有 DFAalpha2、SE 和主导频率显示出显著的时间效应。

结论

基于 DFA 的 VF 波形分析有助于预测 OOHCA 患者首次电击除颤的成功率。该方法的临床应用价值值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验