Suppr超能文献

新冠病毒载量更高是否与死亡相关?

Is Higher Viral Load in SARS-CoV-2 Associated with Death?

机构信息

Universidade Federal de São Paulo (UNIFESP), Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil.

出版信息

Am J Trop Med Hyg. 2020 Nov;103(5):2019-2021. doi: 10.4269/ajtmh.20-0954.

Abstract

There is no proven prognostic marker for patients hospitalized with COVID-19. We conducted a retrospective cohort study of patients hospitalized with COVID-19 from March 14, 2020 to June 17, 2020, at São Paulo Hospital, in São Paulo, Brazil. SARS-CoV-2 viral load was assessed using the cycle threshold (Ct) values obtained from a reverse transcription-PCR assay applied to the nasopharyngeal swab samples. The reactions were performed following the CDC U.S. protocol targeting the N1 and N2 sequences of the SARS-CoV-2 nucleoprotein gene and human ribonuclease P gene serving as an endogenous control. Disease severity and patient outcomes were compared. Among 875 patients, 50.1% (439/875) were categorized as having mild disease (nonhospitalized patients), 30.4% (266/875) moderate (hospitalized in the ward), and 19.5% (170/875) severe disease (admitted to the intensive care unit). A Ct value of < 25 (472/875) indicated a high viral load, which was independently associated with mortality (odds ratio [OR]: 2.93; 95% CI: 1.87-4.60; < 0.0001). We concluded that admission SARS-CoV-2 viral load was independently associated with mortality among patients hospitalized with COVID-19.

摘要

对于因 COVID-19 住院的患者,目前尚无明确的预后标志物。我们对 2020 年 3 月 14 日至 6 月 17 日期间在巴西圣保罗因 COVID-19 住院的患者进行了一项回顾性队列研究。使用逆转录-聚合酶链反应(RT-PCR)检测鼻咽拭子样本中 SARS-CoV-2 的 Ct 值来评估 SARS-CoV-2 病毒载量。该反应是根据美国疾病控制与预防中心(CDC)针对 SARS-CoV-2 核蛋白基因的 N1 和 N2 序列以及作为内参的人核糖核酸酶 P 基因的美国协议进行的。比较了疾病严重程度和患者结局。在 875 例患者中,50.1%(439/875)为轻症(未住院患者),30.4%(266/875)为中度(住院病房),19.5%(170/875)为重症(入住重症监护病房)。Ct 值<25(472/875)表示病毒载量高,与死亡率独立相关(比值比[OR]:2.93;95%置信区间[CI]:1.87-4.60;<0.0001)。我们得出结论,入院时 SARS-CoV-2 病毒载量与 COVID-19 住院患者的死亡率独立相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9eb7/7646800/0266feffc211/tpmd200954f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验