Suppr超能文献

采用 PowerChek SFTSV 实时 PCR 试剂盒检测发热伴血小板减少综合征病毒的循环阈值与病毒载量的相关性:预后意义。

Correlation between the Cycle Threshold Values in Detection of Severe Fever with Thrombocytopenia Syndrome Virus Using PowerChek SFTSV Real-Time PCR Kit and Viral Load: Prognostic Implications.

机构信息

Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea.

Department of Internal Medicine, Jeju National University College of Medicine, Jeju 63241, Republic of Korea.

出版信息

Viruses. 2024 Apr 29;16(5):700. doi: 10.3390/v16050700.

Abstract

BACKGROUND

This study aimed to analyze the correlation between the cycle threshold (Ct) values of severe fever with thrombocytopenia syndrome (SFTS) virus small (S) and middle (M) segments and the SFTS viral load, aiming to estimate the initial viral load and predict prognosis in the early clinical course.

METHOD

A retrospective study was conducted with confirmed SFTS patients at Jeju National University Hospital (2016-2022). Patients were categorized into non-fatal and fatal groups.

RESULTS

This study included 49 patients with confirmed SFTS (non-fatal group, = 42; fatal group, = 7). A significant negative correlation (-0.783) was observed between the log SFTS viral load and Ct values ( < 0.001). This negative correlation was notably stronger in the fatal group (correlation coefficient -0.940) than in the non-fatal group (correlation coefficient -0.345).

CONCLUSION

In this study, we established a correlation between SFTS viral load and Ct values for estimating the initial viral load and early predicting prognosis. These results are expected to offer valuable insights for SFTS patient treatment and prognosis prediction.

摘要

背景

本研究旨在分析严重发热伴血小板减少综合征(SFTS)病毒小(S)和中(M)片段的循环阈值(Ct)值与 SFTS 病毒载量之间的相关性,以期在早期临床病程中估算初始病毒载量并预测预后。

方法

对济州国立大学医院(2016-2022 年)确诊的 SFTS 患者进行回顾性研究。将患者分为非致死组和致死组。

结果

本研究纳入 49 例确诊的 SFTS 患者(非致死组,n=42;致死组,n=7)。SFTS 病毒载量的对数与 Ct 值之间呈显著负相关(-0.783, < 0.001)。在致死组中(相关系数-0.940),这种负相关明显强于非致死组(相关系数-0.345)。

结论

本研究建立了 SFTS 病毒载量与 Ct 值之间的相关性,可用于估算初始病毒载量和早期预测预后。这些结果有望为 SFTS 患者的治疗和预后预测提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0684/11125572/adbaacafdb95/viruses-16-00700-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验