PMMH, CNRS, ESPCI Paris PSL, Sorbonne Université, Université de Paris, F-75005, Paris, France.
Soft Matter. 2020 Nov 21;16(43):9844-9856. doi: 10.1039/d0sm01293a. Epub 2020 Sep 30.
The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world.
生物粒子在粘性流中的输运表现出丰富多样的动力学行为,如形态转变、复杂的取向动力学或变形。在良好控制的流场下对这种复杂行为进行特征描述,是理解生物粒子的微观力学特性以及它们悬浮液的流变特性的关键。虽然在微流控装置中产生简单剪切流相对简单,但要产生应变流,使应变速率在足够长的时间内保持恒定,以观察物体的形态演变,却远非易事。在这项工作中,我们提出了一种基于优化设计的微流道汇聚-发散通道的创新方法,结合基于显微镜的跟踪方法,用于表征单个生物粒子在均匀应变流下的动态行为。跟踪算法结合了一个电动工作台和一个由外部信号控制的显微镜成像系统,使我们能够用高质量的图像跟踪在长距离上运输的单个生物粒子。我们通过实验演示了数值优化微通道提供沿装置中心线的线性速度流场梯度的能力,允许连续的均匀伸长和压缩区域扩展。我们选择了三个测试案例(DNA、肌动蛋白丝和蛋白质聚集体),以突出我们的方法在研究具有广泛的大小、特征和在生物世界中具有相关性的行为的物体的动力学方面的能力。