Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460, United States.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Inorg Chem. 2020 Oct 19;59(20):15553-15560. doi: 10.1021/acs.inorgchem.0c02625. Epub 2020 Sep 30.
High-valent oxocobalt(IV) species have been invoked as key intermediates in oxidative catalysis, but investigations into the chemistry of proton-coupled redox reactions of such species have been limited. Herein, the reactivity of an established water oxidation catalyst, [CoO(OAc)(py)][PF], toward H-atom abstraction reactions is described. Mechanistic analyses and density functional theory (DFT) calculations support a concerted proton-electron transfer (CPET) pathway in which the high energy intermediates formed in stepwise pathways are bypassed. Natural bond orbital (NBO) calculations point to cooperative donor-acceptor σ interactions at the transition state, whereby the H-atom of the substrate is transferred to an orbital delocalized over a Co(μ-O) fragment. The mechanistic insights provide design principles for the development of catalytic C-H activation processes mediated by a multimetallic oxo metal cluster.
高价氧化钴(IV)物种被认为是氧化催化中的关键中间体,但对这类物种的质子耦合氧化还原反应的化学性质的研究还很有限。本文描述了一种已建立的水氧化催化剂[CoO(OAc)(py)][PF] 对 H 原子抽提反应的反应性。机理分析和密度泛函理论(DFT)计算支持协同质子-电子转移(CPET)途径,其中逐步途径中形成的高能中间体被绕过。自然键轨道(NBO)计算指出在过渡态处存在协同供体-受体σ相互作用,其中底物的 H 原子转移到一个轨道上,该轨道定域在 Co(μ-O)片段上。该机理研究为通过多金属氧合金属簇介导电荷转移过程的催化 C-H 活化过程提供了设计原则。