Suppr超能文献

预测学龄前儿童语言发育障碍治疗反应的因素。

Predictors of Treatment Response for Preschool Children With Developmental Language Disorder.

机构信息

Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson.

Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder.

出版信息

Am J Speech Lang Pathol. 2020 Nov 12;29(4):2082-2096. doi: 10.1044/2020_AJSLP-19-00198. Epub 2020 Sep 30.

Abstract

Purpose Enhanced Conversational Recast treatment is an effective intervention for remediating expressive grammatical deficits in preschool-age children with developmental language disorder, but not all children respond equally well. In this study, we sought to identify which child-level variables predict response to treatment of morphological deficits. Method Predictor variables of interest, including pre-intervention test scores and target morpheme production, age, and mother's level of education (proxy for socio-economic status) were included in analyses. The sample included 105 children ( = 5;1 [years;months]) with developmental language disorder who participated in 5 weeks of daily Enhanced Conversational Recast treatment. Classification and regression tree analysis was used to identify covariates that predicted children's generalization of their trained grammatical morpheme, as measured by treatment effect size . Results Our analysis indicates that the Structured Photographic Expressive Language Test-Preschool 2 (SPELT-P 2) scores and the Peabody Picture Vocabulary Test-Fourth Edition scores significantly predicted the degree of benefit a child derived from Enhanced Conversational Recast treatment. Specifically, a SPELT-P 2 score above 75 (but still in the impaired range, < 87) combined with a high Peabody Picture Vocabulary Test-Fourth Edition score (> 100) yielded the largest treatment effect size, whereas a SPELT-P 2 score below 75 predicted the smallest treatment effect size. Other variables included in the model did not significantly predict treatment outcomes. Conclusions Understanding individual differences in response to treatment will allow service providers to make evidence-based decisions regarding how likely a child is to benefit from Enhanced Conversational Recast treatment and the expected magnitude of the response based on the child's background characteristics.

摘要

目的

增强型会话重铸治疗是一种有效的干预手段,可用于矫正学龄前语言发育障碍儿童的表达性语法缺陷,但并非所有儿童的反应都一样好。在这项研究中,我们试图确定哪些儿童个体变量可以预测对形态缺陷治疗的反应。

方法

我们将感兴趣的预测变量,包括干预前的测试分数和目标语素的产生、年龄以及母亲的教育水平(社会经济地位的代表)纳入分析。该样本包括 105 名患有语言发育障碍的儿童(年龄中位数为 5 岁 1 个月),他们参加了 5 周的每日增强型会话重铸治疗。采用分类回归树分析来确定预测儿童训练语法语素泛化的协变量,以治疗效果大小( )来衡量。

结果

我们的分析表明,结构照片表达语言测试-幼儿园 2 版(SPELT-P2)得分和皮博迪图片词汇测试-第四版得分显著预测了儿童从增强型会话重铸治疗中获得的益处程度。具体来说,SPELT-P2 得分高于 75 分(但仍在受损范围内,<87 分),加上皮博迪图片词汇测试-第四版得分高于 100 分,产生了最大的治疗效果大小,而 SPELT-P2 得分低于 75 分则预测了最小的治疗效果大小。模型中纳入的其他变量并没有显著预测治疗结果。

结论

了解治疗反应的个体差异将使服务提供者能够根据儿童的背景特征,就儿童从增强型会话重铸治疗中获益的可能性以及预期的反应幅度做出基于证据的决策。

相似文献

1
Predictors of Treatment Response for Preschool Children With Developmental Language Disorder.预测学龄前儿童语言发育障碍治疗反应的因素。
Am J Speech Lang Pathol. 2020 Nov 12;29(4):2082-2096. doi: 10.1044/2020_AJSLP-19-00198. Epub 2020 Sep 30.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验