Suppr超能文献

监督降阶学习在胸腔电阻抗断层成像中的应用。

Supervised Descent Learning for Thoracic Electrical Impedance Tomography.

出版信息

IEEE Trans Biomed Eng. 2021 Apr;68(4):1360-1369. doi: 10.1109/TBME.2020.3027827. Epub 2021 Mar 18.

Abstract

OBJECTIVE

The absolute image reconstruction problem of electrical impedance tomography (EIT) is ill-posed. Traditional methods usually solve a nonlinear least squares problem with some kind of regularization. These methods suffer from low accuracy, poor anti-noise performance, and long computation time. Besides, the integration of a priori information is not very flexible. This work tries to solve EIT inverse problem using a machine learning algorithm for the application of thorax imaging.

METHODS

We developed the supervised descent learning EIT (SDL-EIT) inversion algorithm based on the idea of supervised descent method (SDM). The algorithm approximates the mapping from measured data to the conductivity image by a series of descent directions learned from training samples. We designed a training data set in which the thorax contour, and some general structure of lungs, and heart are embedded. The algorithm is implemented in both two-, and three-dimensional cases, and is evaluated using synthetic, and measured thoracic data. Results, and conclusion: For synthetic data, SDL-EIT shows better accuracy, and anti-noise performance compared with traditional Gauss-Newton inversion (GNI) method. For measured data, the result of SDL-EIT is reasonable compared with computed tomography (CT) scan image.

SIGNIFICANCE

Using SDL-EIT, prior information can be easily integrated through the specifically designed training data set, and the image reconstruction process can be accelerated. The algorithm is effective in inverting measured thoracic data. It is a potential algorithm for human thorax imaging.

摘要

目的

电阻抗断层成像(EIT)的绝对图像重建问题是不适定的。传统方法通常使用某种正则化方法来解决非线性最小二乘问题。这些方法存在精度低、抗噪性能差、计算时间长等问题,并且先验信息的融合不够灵活。本工作尝试使用机器学习算法解决 EIT 反问题,用于胸部成像的应用。

方法

我们基于监督下降法(SDM)的思想,开发了监督下降学习 EIT(SDL-EIT)反演算法。该算法通过从训练样本中学习的一系列下降方向来近似从测量数据到电导率图像的映射。我们设计了一个训练数据集,其中嵌入了胸部轮廓和一些肺部和心脏的一般结构。该算法在二维和三维情况下都得到了实现,并使用合成和测量的胸部数据进行了评估。

结果和结论

对于合成数据,SDL-EIT 与传统的高斯牛顿反演(GNI)方法相比,具有更好的准确性和抗噪声性能。对于测量数据,SDL-EIT 的结果与计算机断层扫描(CT)扫描图像相比是合理的。

意义

使用 SDL-EIT,可以通过专门设计的训练数据集轻松集成先验信息,并加速图像重建过程。该算法在反演测量的胸部数据方面是有效的。它是一种用于人体胸部成像的潜在算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验