Suppr超能文献

基于数据驱动、本体和自然语言处理技术的 COVID-19 临床试验分析。

Analysis of COVID-19 clinical trials: A data-driven, ontology-based, and natural language processing approach.

机构信息

The Harker School, San Jose, CA, United States of America.

出版信息

PLoS One. 2020 Sep 30;15(9):e0239694. doi: 10.1371/journal.pone.0239694. eCollection 2020.

Abstract

With the novel COVID-19 pandemic disrupting and threatening the lives of millions, researchers and clinicians have been recently conducting clinical trials at an unprecedented rate to learn more about the virus and potential drugs/treatments/vaccines to treat its infection. As a result of the influx of clinical trials, researchers, clinicians, and the lay public, now more than ever, face a significant challenge in keeping up-to-date with the rapid rate of discoveries and advances. To remedy this problem, this research mined the ClinicalTrials.gov corpus to extract COVID-19 related clinical trials, produce unique reports to summarize findings and make the meta-data available via Application Programming Interfaces (APIs). Unique reports were created for each drug/intervention, Medical Subject Heading (MeSH) term, and Human Phenotype Ontology (HPO) term. These reports, which have been run over multiple time points, along with APIs to access meta-data, are freely available at http://covidresearchtrials.com. The pipeline, reports, association of COVID-19 clinical trials with MeSH and HPO terms, insights, public repository, APIs, and correlations produced are all novel in this work. The freely available, novel resources present up-to-date relevant biological information and insights in a robust, accessible manner, illustrating their invaluable potential to aid researchers overcome COVID-19 and save hundreds of thousands of lives.

摘要

随着新型 COVID-19 大流行的爆发,数百万人的生命受到了威胁,研究人员和临床医生最近一直在以空前的速度进行临床试验,以更多地了解这种病毒以及潜在的药物/治疗方法/疫苗来治疗其感染。由于临床试验的大量涌入,研究人员、临床医生和普通大众现在比以往任何时候都面临着一个重大挑战,即如何跟上发现和进展的快速步伐。为了解决这个问题,本研究从 ClinicalTrials.gov 语料库中提取了与 COVID-19 相关的临床试验,生成独特的报告来总结发现,并通过应用程序编程接口 (API) 提供元数据。为每个药物/干预措施、医学主题词 (MeSH) 术语和人类表型本体 (HPO) 术语创建了独特的报告。这些报告已经在多个时间点运行,同时提供访问元数据的 API,可以在 http://covidresearchtrials.com 上免费获得。本工作中的新颖之处在于,该管道、报告、COVID-19 临床试验与 MeSH 和 HPO 术语的关联、见解、公共存储库、API 和相关性。这些免费提供的新颖资源以强大、可访问的方式呈现了最新的相关生物学信息和见解,展示了它们在帮助研究人员克服 COVID-19 并拯救数十万人生命方面的宝贵潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a06d/7526926/06551707945d/pone.0239694.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验