Suppr超能文献

用于优化陆上风力发电场空间雷达蝙蝠检测的分析体积模型。

Analytical volume model for optimized spatial radar bat detection in onshore wind parks.

机构信息

Department of Environmental Technology, Faculty of Life Sciences, University of Applied Sciences Hamburg, Hamburg, Germany.

Institute of Environmental Planning, Leibniz University Hannover, Hannover, Germany.

出版信息

PLoS One. 2020 Sep 30;15(9):e0239911. doi: 10.1371/journal.pone.0239911. eCollection 2020.

Abstract

To develop mitigation measures for the protection of bats in close proximity to onshore wind turbines, new detection techniques covering large-scale environments and techniques, which are able to track individuals are required. Radar based observations, successfully applied in ornithological studies, offer a promising potential, but come with challenges regarding the comparability of measurements and noise interference (ground clutter) from objects within detection range. This paper presents improvements of a commercially available inexpensive pulse radar for 3D spatial detection of bat-sized objects in onshore wind parks. A new analytical spatial detection volume model is presented incorporating calibrated radar data and landscape parameters such as clutter. Computer simulation programs to process the analytical spatial detection volume model were developed. For model calibration, the minimum signal power of the radar was experimentally determined with the radar cross section (RCS) of an artificial bat (similar to Nyctalus noctula), resulting in a maximum detection range of 800 m and a corresponding RCS of 12.7 cm². Additionally, the spatial volume for radar detection was optimized with a clutter shielding fence (CSF). Adjusting the volume model by incorporating a theoretical model of the CSF, an extension of the detection volume by a factor of 2.5 was achieved, while the total volume of a 105° horizontal angular radar image section yields 0.0105 km³. Extrapolation and comparison with state-of-the-art acoustic bat detection result in a 270 times larger volume, confirming the large-scale detection capabilities of the pulse radar.

摘要

为了制定保护近岸风力涡轮机附近蝙蝠的缓解措施,需要新的检测技术,包括覆盖大规模环境和能够跟踪个体的技术。基于雷达的观测在鸟类学研究中得到了成功应用,具有很大的潜力,但在测量的可比性和检测范围内物体的噪声干扰(地面杂波)方面存在挑战。本文提出了一种商业上可用的廉价脉冲雷达的改进方法,用于在近岸风电场中对蝙蝠大小的物体进行 3D 空间检测。提出了一种新的分析空间检测体积模型,该模型结合了校准的雷达数据和景观参数,如杂波。开发了用于处理分析空间检测体积模型的计算机模拟程序。为了模型校准,使用人工蝙蝠(类似于 Nyctalus noctula)的雷达截面(RCS)实验确定了雷达的最小信号功率,从而实现了最大检测范围为 800 米,相应的 RCS 为 12.7 cm²。此外,通过使用杂波屏蔽栅栏(CSF)优化了雷达检测的空间体积。通过将 CSF 的理论模型纳入体积模型进行调整,检测体积扩展了 2.5 倍,而 105°水平角雷达图像部分的总体积为 0.0105 km³。通过外推并与最先进的声学蝙蝠检测结果进行比较,得到了 270 倍大的体积,证实了脉冲雷达的大规模检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa7d/7526923/9604e0728be5/pone.0239911.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验