Kellett Cameron W, Berlinguette Curtis P
Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada.
Inorg Chem. 2020 Oct 19;59(20):14696-14705. doi: 10.1021/acs.inorgchem.0c02251. Epub 2020 Sep 30.
High-performance electronic materials and redox catalysts often rely on fast rates of intermolecular electron transfer (IET). Maximizing IET rates requires strong electronic coupling () between the electron donor and acceptor, yet universal structure-property relationships governing in outer-sphere IET reactions have yet to be developed. For ground-state IET reactions, is reasonably approximated by the extent of overlap between the frontier donor and acceptor orbitals involved in the electron-transfer reaction. Intermolecular interactions that encourage overlap between these orbitals, thereby creating a direct orbital pathway for IET, have a strong impact on and, by extension, the IET rates. In this Forum Article, we present a set of intuitive molecular design strategies employing this direct orbital pathway principle to maximize for IET reactions. We highlight how the careful design of redox-active molecules anchored to solid semiconducting substrates provides a powerful experimental platform for elucidating how electronic structure and specific intermolecular interactions affect IET reactions.
高性能电子材料和氧化还原催化剂通常依赖于快速的分子间电子转移(IET)。要使IET速率最大化,需要电子供体和受体之间有强电子耦合(),然而,尚未建立起适用于外层球IET反应中控制的通用结构-性质关系。对于基态IET反应,可通过电子转移反应中前沿供体和受体轨道之间的重叠程度合理地近似。促进这些轨道之间重叠从而为IET创造直接轨道路径的分子间相互作用,对有很大影响,进而影响IET速率。在这篇论坛文章中,我们提出了一组直观的分子设计策略,利用这一直接轨道路径原理来最大化IET反应的。我们强调了锚定在固体半导体衬底上的氧化还原活性分子的精心设计如何为阐明电子结构和特定分子间相互作用如何影响IET反应提供了一个强大的实验平台。