Suppr超能文献

MYC 促进范可尼贫血骨髓干细胞功能障碍。

MYC Promotes Bone Marrow Stem Cell Dysfunction in Fanconi Anemia.

机构信息

Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico.

Research Program in Systems Oncology, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland.

出版信息

Cell Stem Cell. 2021 Jan 7;28(1):33-47.e8. doi: 10.1016/j.stem.2020.09.004. Epub 2020 Sep 29.

Abstract

Bone marrow failure (BMF) in Fanconi anemia (FA) patients results from dysfunctional hematopoietic stem and progenitor cells (HSPCs). To identify determinants of BMF, we performed single-cell transcriptome profiling of primary HSPCs from FA patients. In addition to overexpression of p53 and TGF-β pathway genes, we identified high levels of MYC expression. We correspondingly observed coexistence of distinct HSPC subpopulations expressing high levels of TP53 or MYC in FA bone marrow (BM). Inhibiting MYC expression with the BET bromodomain inhibitor (+)-JQ1 reduced the clonogenic potential of FA patient HSPCs but rescued physiological and genotoxic stress in HSPCs from FA mice, showing that MYC promotes proliferation while increasing DNA damage. MYC-high HSPCs showed significant downregulation of cell adhesion genes, consistent with enhanced egress of FA HSPCs from bone marrow to peripheral blood. We speculate that MYC overexpression impairs HSPC function in FA patients and contributes to exhaustion in FA bone marrow.

摘要

范可尼贫血(FA)患者的骨髓衰竭(BMF)是由于造血干祖细胞(HSPCs)功能障碍所致。为了确定 BMF 的决定因素,我们对 FA 患者的原代 HSPC 进行了单细胞转录组谱分析。除了 p53 和 TGF-β 通路基因的过表达外,我们还发现了 MYC 表达水平升高。我们相应地观察到 FA 骨髓(BM)中存在表达高水平 TP53 或 MYC 的不同 HSPC 亚群共存。用 BET 溴结构域抑制剂(+)-JQ1 抑制 MYC 表达可降低 FA 患者 HSPC 的集落形成潜力,但可挽救 FA 小鼠 HSPC 中的生理和遗传毒性应激,表明 MYC 促进增殖的同时增加 DNA 损伤。MYC-高 HSPCs 表现出细胞黏附基因的显著下调,与 FA HSPCs 从骨髓向外周血的增强迁出一致。我们推测,MYC 过表达会损害 FA 患者 HSPC 的功能,并导致 FA 骨髓衰竭。

相似文献

1
MYC Promotes Bone Marrow Stem Cell Dysfunction in Fanconi Anemia.
Cell Stem Cell. 2021 Jan 7;28(1):33-47.e8. doi: 10.1016/j.stem.2020.09.004. Epub 2020 Sep 29.
3
TGF-β Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia.
Cell Stem Cell. 2016 May 5;18(5):668-81. doi: 10.1016/j.stem.2016.03.002. Epub 2016 Mar 24.
5
Gene therapy restores the transcriptional program of hematopoietic stem cells in Fanconi anemia.
Haematologica. 2023 Oct 1;108(10):2652-2663. doi: 10.3324/haematol.2022.282418.
6
Inhibition of TGFβ1 and TGFβ3 promotes hematopoiesis in Fanconi anemia.
Exp Hematol. 2021 Jan;93:70-84.e4. doi: 10.1016/j.exphem.2020.11.002. Epub 2020 Nov 7.
7
Cell-Cycle-Specific Function of p53 in Fanconi Anemia Hematopoietic Stem and Progenitor Cell Proliferation.
Stem Cell Reports. 2018 Feb 13;10(2):339-346. doi: 10.1016/j.stemcr.2017.12.006. Epub 2018 Jan 4.
8
Does immune destruction drive all forms of bone marrow failure?
J Clin Invest. 2022 Aug 1;132(15). doi: 10.1172/JCI161288.

引用本文的文献

2
Inhibition of DEK restores hematopoietic stem cell function in Fanconi anemia.
J Exp Med. 2025 Mar 3;222(3). doi: 10.1084/jem.20241248. Epub 2025 Jan 21.
3
Restoring hematopoietic stem and progenitor cell function in mice by delivery of RNA lipid nanoparticles.
Mol Ther Nucleic Acids. 2024 Dec 12;36(1):102423. doi: 10.1016/j.omtn.2024.102423. eCollection 2025 Mar 11.
4
Contribution of p53-dependent and -independent mechanisms to upregulation of p21 in Fanconi anemia.
PLoS Genet. 2024 Nov 7;20(11):e1011474. doi: 10.1371/journal.pgen.1011474. eCollection 2024 Nov.
6
Ing4-deficiency promotes a quiescent yet transcriptionally poised state in hematopoietic stem cells.
iScience. 2024 Jul 15;27(8):110521. doi: 10.1016/j.isci.2024.110521. eCollection 2024 Aug 16.
7
Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells.
Cancer Control. 2024 Jan-Dec;31:10732748241270564. doi: 10.1177/10732748241270564.
8
MYC: there is more to it than cancer.
Front Cell Dev Biol. 2024 Mar 6;12:1342872. doi: 10.3389/fcell.2024.1342872. eCollection 2024.
10
Identifying an AML Prognostic Model Using 10 Marker Genes from Single-Cell Transcriptome and Bulk Transcriptome Analysis.
Biochem Genet. 2024 Dec;62(6):4619-4638. doi: 10.1007/s10528-024-10678-9. Epub 2024 Feb 12.

本文引用的文献

1
Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia.
Nat Med. 2019 Sep;25(9):1396-1401. doi: 10.1038/s41591-019-0550-z. Epub 2019 Sep 9.
3
The bone marrow microenvironment at single-cell resolution.
Nature. 2019 May;569(7755):222-228. doi: 10.1038/s41586-019-1104-8. Epub 2019 Apr 10.
4
Characterization of cell fate probabilities in single-cell data with Palantir.
Nat Biotechnol. 2019 Apr;37(4):451-460. doi: 10.1038/s41587-019-0068-4. Epub 2019 Mar 21.
5
New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing.
Blood. 2019 Mar 28;133(13):1415-1426. doi: 10.1182/blood-2018-08-835355. Epub 2019 Feb 6.
6
Fanconi anemia protein FANCI functions in ribosome biogenesis.
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2561-2570. doi: 10.1073/pnas.1811557116. Epub 2019 Jan 28.
7
Smarcal1 and Zranb3 Protect Replication Forks from Myc-Induced DNA Replication Stress.
Cancer Res. 2019 Apr 1;79(7):1612-1623. doi: 10.1158/0008-5472.CAN-18-2705. Epub 2019 Jan 4.
8
USP1 Is Required for Replication Fork Protection in BRCA1-Deficient Tumors.
Mol Cell. 2018 Dec 20;72(6):925-941.e4. doi: 10.1016/j.molcel.2018.10.045.
9
DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells.
Nature. 2018 Nov;563(7732):522-526. doi: 10.1038/s41586-018-0670-5. Epub 2018 Oct 31.
10
BET Inhibition Induces HEXIM1- and RAD51-Dependent Conflicts between Transcription and Replication.
Cell Rep. 2018 Nov 20;25(8):2061-2069.e4. doi: 10.1016/j.celrep.2018.10.079.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验